• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Evolution equations in discrete and continuous time for nonexpansive operators in Banach spaces

Vigeral, Guillaume (2010), Evolution equations in discrete and continuous time for nonexpansive operators in Banach spaces, ESAIM. COCV, 16, p. 809-832. http://dx.doi.org/10.1051/cocv/2009026

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00549765/fr/
Date
2010
Journal name
ESAIM. COCV
Volume
16
Publisher
EDP Sciences
Pages
809-832
Publication identifier
http://dx.doi.org/10.1051/cocv/2009026
Metadata
Show full item record
Author(s)
Vigeral, Guillaume
Abstract (EN)
We consider some discrete and continuous dynamics in a Banach space involving a non expansive operator J and a corresponding family of strictly contracting operators Φ(λ, x) := λJ (1−λ x) for λ ∈ ]0, 1]. Our motivation comes from the study of two-player zero-sum repeated games, where the value of the n-stage game (resp. the value of the λ-discounted game) satisfies the relation vn = Φ( 1 , vn−1) (resp. vλ = Φ(λ, vλ)) where J is the Shapley operator of the game. We study the evolution n equation u (t) = J(u(t)) − u(t) as well as associated Eulerian schemes, establishing a new exponential formula and a Kobayashi-like inequality for such trajectories. We prove that the solution of the non-autonomous evolution equation u (t) = Φ(λ(t), u(t)) − u(t) has the same asymptotic behavior (even when it diverges) as the sequence vn (resp. as the family vλ) when λ(t) = 1/t (resp. when λ(t) converges slowly enough to 0).
Subjects / Keywords
Kobayashi inequality; Banach spaces; Evolution equations; discrete and continuous time; games; Shapley value

Related items

Showing items related by title and author.

  • Thumbnail
    Generalized iterations of non expansive maps, evolution equations and values of zero-sum stochastic games with varying stage duration 
    Sorin, Sylvain; Vigeral, Guillaume (2015) Document de travail / Working paper
  • Thumbnail
    First time to exit of a continuous Itô process: General moment estimates and L1 -convergence rate for discrete time approximations 
    Bouchard, Bruno; Geiss, Stefan; Gobet, Emmanuel (2017) Article accepté pour publication ou publié
  • Thumbnail
    Second-order in time schemes for gradient flows in Wasserstein and geodesic metric spaces 
    Legendre, Guillaume; Turinici, Gabriel (2017) Article accepté pour publication ou publié
  • Thumbnail
    FISTA" in Banach spaces with adaptive discretisations" 
    Chambolle, Antonin; Tovey, Robert (2022) Article accepté pour publication ou publié
  • Thumbnail
    Games with incomplete information in continuous time and for continuous types 
    Cardaliaguet, Pierre; Rainer, Catherine (2012) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo