Show simple item record

dc.contributor.authorTrashorras, José
dc.date.accessioned2009-06-30T08:38:55Z
dc.date.available2009-06-30T08:38:55Z
dc.date.issued2008
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/537
dc.language.isoenen
dc.subjectLarge deviations · Random permutations · Symmetrised empirical measures · Symmetrised bridge processesen
dc.subject.ddc519en
dc.titleLarge deviations for symmetrised empirical measures.en
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenIn this paper we prove a Large Deviation Principle for the sequence of symmetrised empirical measures TeX where σ n is a random permutation and ((X i n )1≤i≤n ) n≥1 is a triangular array of random variables with suitable properties. As an application we show how this result allows to improve the Large Deviation Principles for symmetrised initial-terminal conditions bridge processes recently established by Adams, Dorlas and König.
dc.relation.isversionofjnlnameJournal of Theoretical Probability
dc.relation.isversionofjnlvol21en
dc.relation.isversionofjnlissue2en
dc.relation.isversionofjnldate2008
dc.relation.isversionofjnlpages397-412en
dc.relation.isversionofdoihttp://dx.doi.org/10.1007/s10959-007-0121-yen
dc.description.sponsorshipprivateouien
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record