dc.contributor.author | Trashorras, José | |
dc.date.accessioned | 2009-06-30T08:38:55Z | |
dc.date.available | 2009-06-30T08:38:55Z | |
dc.date.issued | 2008 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/537 | |
dc.language.iso | en | en |
dc.subject | Large deviations · Random permutations · Symmetrised empirical measures · Symmetrised bridge processes | en |
dc.subject.ddc | 519 | en |
dc.title | Large deviations for symmetrised empirical measures. | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | In this paper we prove a Large Deviation Principle for the sequence of symmetrised empirical measures TeX where σ n is a random permutation and ((X i n )1≤i≤n ) n≥1 is a triangular array of random variables with suitable properties. As an application we show how this result allows to improve the Large Deviation Principles for symmetrised initial-terminal conditions bridge processes recently established by Adams, Dorlas and König. | |
dc.relation.isversionofjnlname | Journal of Theoretical Probability | |
dc.relation.isversionofjnlvol | 21 | en |
dc.relation.isversionofjnlissue | 2 | en |
dc.relation.isversionofjnldate | 2008 | |
dc.relation.isversionofjnlpages | 397-412 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1007/s10959-007-0121-y | en |
dc.description.sponsorshipprivate | oui | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |