The relativistic mean-field equations of the atomic nucleus
Rota Nodari, Simona (2012), The relativistic mean-field equations of the atomic nucleus, Reviews in Mathematical Physics, 24, 4, p. 41 pages. http://dx.doi.org/10.1142/S0129055X12500080
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00553265/fr/Date
2012Journal name
Reviews in Mathematical PhysicsVolume
24Number
4Publisher
World Scientific
Pages
41 pages
Publication identifier
Metadata
Show full item recordAbstract (EN)
In nuclear physics, the relativistic mean-field theory describes the nucleus as a system of Dirac nucleons which interact via meson fields. In a static case and without nonlinear self-coupling of the $\sigma$ meson, the relativistic mean-field equations become a system of Dirac equations where the potential is given by the meson and photon fields. The aim of this work is to prove the existence of solutions of these equations. We consider a minimization problem with constraints that involve negative spectral projectors and we apply the concentration-compactness lemma to find a minimizer of this problem. We show that this minimizer is a solution of the relativistic mean-field equations considered.Subjects / Keywords
system of Dirac; atomic nucleus; relativistic mean-field equationsRelated items
Showing items related by title and author.
-
Esteban, Maria J.; Rota Nodari, Simona (2012) Article accepté pour publication ou publié
-
Esteban, Maria J.; Rota Nodari, Simona (2013) Article accepté pour publication ou publié
-
Le Treust, Loïc; Rota Nodari, Simona (2013) Article accepté pour publication ou publié
-
Rota Nodari, Simona (2010) Article accepté pour publication ou publié
-
Rota Nodari, Simona (2010) Article accepté pour publication ou publié