Properties of the periodic Hartree-Fock minimizer
Ghimenti, Marco; Lewin, Mathieu (2009), Properties of the periodic Hartree-Fock minimizer, Calculus of Variations and Partial Differential Equations, 35, 1, p. 39-56. http://dx.doi.org/10.1007/s00526-008-0196-z
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00266413/en/Date
2009Journal name
Calculus of Variations and Partial Differential EquationsVolume
35Number
1Publisher
Springer
Pages
39-56
Publication identifier
Metadata
Show full item recordAbstract (EN)
We study the periodic Hartree-Fock model used for the description of electrons in a crystal. The existence of a minimizer was previously shown by Catto, Le Bris and Lions (Ann. Inst. H. Poincare Anal. Non Lineaire 18 (2001), no.6, 687-760). We prove in this paper that any minimizer is necessarily a projector and that it solves a certain nonlinear equation, similarly to the atomic case. In particular we show that the Fermi level is either empty or totally filled.Subjects / Keywords
Quantum Algebra; MathematicsRelated items
Showing items related by title and author.
-
Gontier, David; Hainzl, Christian; Lewin, Mathieu (2019-05) Article accepté pour publication ou publié
-
Gontier, David; Lewin, Mathieu (2019) Article accepté pour publication ou publié
-
Séré, Eric; Lewin, Mathieu; Hainzl, Christian; Gravejat, Philippe (2012) Communication / Conférence
-
Lewin, Mathieu (2017) Article accepté pour publication ou publié
-
Dolbeault, Jean; Felmer, Patricio; Lewin, Mathieu (2009) Article accepté pour publication ou publié