Properties of the periodic Hartree-Fock minimizer
dc.contributor.author | Ghimenti, Marco | |
dc.contributor.author | Lewin, Mathieu
HAL ID: 1466 ORCID: 0000-0002-1755-0207 | |
dc.date.accessioned | 2009-06-30T12:23:01Z | |
dc.date.available | 2009-06-30T12:23:01Z | |
dc.date.issued | 2009 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/566 | |
dc.language.iso | en | en |
dc.subject | Quantum Algebra | |
dc.subject | Mathematics | en |
dc.subject.ddc | 519 | en |
dc.title | Properties of the periodic Hartree-Fock minimizer | en |
dc.type | Article accepté pour publication ou publié | |
dc.contributor.editoruniversityother | Université de Cergy Pontoise;France | |
dc.contributor.editoruniversityother | Università di Pisa;Italie | |
dc.description.abstracten | We study the periodic Hartree-Fock model used for the description of electrons in a crystal. The existence of a minimizer was previously shown by Catto, Le Bris and Lions (Ann. Inst. H. Poincare Anal. Non Lineaire 18 (2001), no.6, 687-760). We prove in this paper that any minimizer is necessarily a projector and that it solves a certain nonlinear equation, similarly to the atomic case. In particular we show that the Fermi level is either empty or totally filled. | en |
dc.relation.isversionofjnlname | Calculus of Variations and Partial Differential Equations | |
dc.relation.isversionofjnlvol | 35 | en |
dc.relation.isversionofjnlissue | 1 | en |
dc.relation.isversionofjnldate | 2009-05 | |
dc.relation.isversionofjnlpages | 39-56 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1007/s00526-008-0196-z | en |
dc.identifier.urlsite | http://hal.archives-ouvertes.fr/hal-00266413/en/ | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Springer | |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |