A Numerical Exploration of Compressed Sampling Recovery
dc.contributor.author | Fadili, Jalal
HAL ID: 15510 | |
dc.contributor.author | Peyré, Gabriel
HAL ID: 1211 | |
dc.contributor.author | Dossal, Charles | |
dc.date.accessioned | 2009-06-30T12:31:13Z | |
dc.date.available | 2009-06-30T12:31:13Z | |
dc.date.issued | 2009-04 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/568 | |
dc.language.iso | en | en |
dc.subject | L1 minimization | en |
dc.subject | sparsity | en |
dc.subject | Compressed sensing | en |
dc.subject.ddc | 519 | en |
dc.title | A Numerical Exploration of Compressed Sampling Recovery | en |
dc.type | Communication / Conférence | en_US |
dc.contributor.editoruniversityother | Université de Bordeaux I;France | |
dc.contributor.editoruniversityother | Université de Caen;France | |
dc.description.abstracten | This paper explores numerically the efficiency of $\lun$ minimization for the recovery of sparse signals from compressed sampling measurements in the noiseless case. Inspired by topological criteria for $\lun$-identifiability, a greedy algorithm computes sparse vectors that are difficult to recover by $\ell_1$-minimization. We evaluate numerically the theoretical analysis without resorting to Monte-Carlo sampling, which tends to avoid worst case scenarios. This allows one to challenge sparse recovery conditions based on polytope projection and on the restricted isometry property. | en |
dc.identifier.urlsite | http://hal.archives-ouvertes.fr/hal-00365028/en/ | en |
dc.description.sponsorshipprivate | oui | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.relation.conftitle | SPARS'09, Signal Processing with Adaptive Sparse Structured Representations | en |
dc.relation.confdate | 2009-04 | |
dc.relation.confcity | Saint-Malo | en |
dc.relation.confcountry | France | en |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |