• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • DRM (UMR CNRS 7088)
  • DRM : Publications
  • Consulter le document
  •   Accueil
  • DRM (UMR CNRS 7088)
  • DRM : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - No thumbnail

Non-Stationary Semivariogram Analysis Using Real Estate Transaction Data

Simon, Arnaud; Srikhum, Piyawan (2010), Non-Stationary Semivariogram Analysis Using Real Estate Transaction Data, ERES 2010, 2010-06, Milan, Italie

Voir/Ouvrir
eres2010_314_pres_Srikhum_NON-STATIONARY_SEMIV.pptx (2.563Mb)
Type
Communication / Conférence
Date
2010
Titre du colloque
ERES 2010
Date du colloque
2010-06
Ville du colloque
Milan
Pays du colloque
Italie
Métadonnées
Afficher la notice complète
Auteur(s)
Simon, Arnaud
Srikhum, Piyawan
Résumé (EN)
Geostatistical model is one of spatial statistical methodologies used for correcting spatial autocorrelation problem. To apply this model, two common assumptions should be made to allow global homogeneity: spatial continuity and spatial stationary. In different fields of research such as geography, environmental science and computer science, they usually take into account a violation of the second assumption (spatial stationary) but no article works under non-stationary condition in real estate research fields. This article is probably a first attempt to examine the violation of stationary assumption, in term of time and space, using transaction prices, from 1998 to 2007, of Parisian properties situated 5 kilometers around Arc de Triomphe. By comparing estimated 1-year semivariogram to 10-years semivariogram function, we found evidence of non-time-stationary. Likewise, non-spatial-stationary problem was detected by segmenting data in 90 degrees rotating windows. Our results show that we should not compute a common variogram for all parts of the region of interest.
Mots-clés
Real estate transaction; non-stationary; spatial autocorrelation; geostatistical model
JEL
C49 - Other
G19 - Other

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Spatial and Temporal Non-Stationary Semivariogram Analysis Using Real Estate transaction Data 
    Simon, Arnaud; Shrikum, Piyawan (2011) Communication / Conférence
  • Vignette de prévisualisation
    Perceived transactions costs: an explanation of the real estate brokerage 
    Larceneux, Fabrice; Lefebvre, Thomas; Simon, Arnaud (2014-06) Communication / Conférence
  • Vignette de prévisualisation
    Forward Curve Risk Factors Analysis in the UK Real Estate Market 
    Drouhin, Pierre-Arnaud; Essafi, Yasmine; Simon, Arnaud (2015) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Geographical Diversification Through Spatial Autocorrelation Analysis Of Paris Residential Market 
    Simon, Arnaud; Srikhum, Piyawan (2010) Communication / Conférence
  • Vignette de prévisualisation
    Forward Curve dynamics in the UK Real Estate Market 
    Drouhin, Pierre-Arnaud; Simon, Arnaud (2011) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo