• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Using parallel computation to improve Independent Metropolis-Hastings based estimation

Smith, Murray H.; Robert, Christian P.; Jacob, Pierre E. (2011), Using parallel computation to improve Independent Metropolis-Hastings based estimation, Journal of Computational and Graphical Statistics, 20, 3, p. 616-635. http://dx.doi.org/10.1198/jcgs.2011.10167

Type
Article accepté pour publication ou publié
External document link
http://fr.arXiv.org/abs/1010.1595
Date
2011
Journal name
Journal of Computational and Graphical Statistics
Volume
20
Number
3
Publisher
American Statistical Association
Pages
616-635
Publication identifier
http://dx.doi.org/10.1198/jcgs.2011.10167
Metadata
Show full item record
Author(s)
Smith, Murray H.
Robert, Christian P.
Jacob, Pierre E. cc
Abstract (EN)
In this paper, we consider the implications of the fact that parallel raw-power can be exploited by a generic Metropolis--Hastings algorithm if the proposed values are independent. In particular, we present improvements to the independent Metropolis--Hastings algorithm that significantly decrease the variance of any estimator derived from the MCMC output, for a null computing cost since those improvements are based on a fixed number of target density evaluations. Furthermore, the techniques developed in this paper do not jeopardize the Markovian convergence properties of the algorithm, since they are based on the Rao--Blackwell principles of Gelfand and Smith (1990), already exploited in Casella and Robert (1996), Atchade and Perron (2005) and Douc and Robert (2010). We illustrate those improvement both on a toy normal example and on a classical probit regression model but insist on the fact that they are universally applicable.
Subjects / Keywords
Metropolis-Hastings algorithm

Related items

Showing items related by title and author.

  • Thumbnail
    Estimation of demo-genetic model probabilities with Approximate Bayesian Computation using linear discriminant analysis on summary statistics. 
    Cornuet, Jean-Marie; Robert, Christian P.; Pudlo, Pierre; Guillemaud, Thomas; Marin, Jean-Michel; Lombaert, Eric; Estoup, Arnaud (2012) Article accepté pour publication ou publié
  • Thumbnail
    Viability-Based Computations of Solutions to the Hamilton-Jacobi-Bellman Equation 
    Bayen, Alexandre M.; Claudel, Christian; Saint-Pierre, Patrick (2007) Communication / Conférence
  • Thumbnail
    Sampling using Adaptive Regenerative Processes 
    McKimm, Hector; Wang, Andi Q.; Pollock, Murray; Robert, Christian P.; Roberts, Gareth O. (2022) Document de travail / Working paper
  • Thumbnail
    Computation of solutions to the Moskowitz Hamilton-Jacobi-Bellman equation under viability constraints 
    Saint-Pierre, Patrick; Claudel, Christian; Bayen, Alexandre M. (2008-01) Communication / Conférence
  • Thumbnail
    Some discussions of D. Fearnhead and D. Prangle's Read Paper "Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation" 
    Singh, Sumeetpal S.; Sedki, Mohammed; Jasra, Ajay; Pudlo, Pierre; Robert, Christian P.; Lee, Anthony; Marin, Jean-Michel; Kosmidis, Ioannis; Girolami, Mark; Andrieu, Christophe; Cornebise, Julien; Doucet, Arnaud; Barthelme, Simon; Chopin, Nicolas (2012) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo