Approximate Bayesian Computational methods
hal.structure.identifier | ||
dc.contributor.author | Marin, Jean-Michel
HAL ID: 9121 ORCID: 0000-0001-7451-9719 | * |
hal.structure.identifier | ||
dc.contributor.author | Pudlo, Pierre | * |
hal.structure.identifier | ||
dc.contributor.author | Robert, Christian P. | * |
hal.structure.identifier | ||
dc.contributor.author | Ryder, Robin J. | * |
dc.date.accessioned | 2011-03-02T15:25:32Z | |
dc.date.available | 2011-03-02T15:25:32Z | |
dc.date.issued | 2012 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/5724 | |
dc.language.iso | en | en |
dc.subject | likelihood-free methods | en |
dc.subject | Bayesian statistics | en |
dc.subject | ABC Methodology | en |
dc.subject | DIYABC | en |
dc.subject | Bayesian model chance | en |
dc.subject.ddc | 519 | en |
dc.subject.classificationjel | C15 | en |
dc.subject.classificationjel | C11 | en |
dc.title | Approximate Bayesian Computational methods | en |
dc.type | Article accepté pour publication ou publié | |
dc.contributor.editoruniversityother | Institut Universitaire de France (IUF) Ministère de l'Enseignement Supérieur et de la Recherche Scientifique;France | |
dc.contributor.editoruniversityother | Institut de Mathématiques et de Modélisation de Montpellier (I3M) CNRS : UMR5149 – Université Montpellier II - Sciences et Techniques du Languedoc;France | |
dc.contributor.editoruniversityother | Centre de Recherche en Économie et Statistique (CREST) INSEE – École Nationale de la Statistique et de l'Administration Économique;France | |
dc.description.abstracten | Also known as likelihood-free methods, approximate Bayesian computational (ABC) methods have appeared in the past ten years as the most satisfactory approach to untractable likelihood problems, first in genetics then in a broader spectrum of applications. However, these methods suffer to some degree from calibration difficulties that make them rather volatile in their implementation and thus render them suspicious to the users of more traditional Monte Carlo methods. In this survey, we study the various improvements and extensions made to the original ABC algorithm over the recent years. | en |
dc.relation.isversionofjnlname | Statistics and Computing | |
dc.relation.isversionofjnlvol | 22 | |
dc.relation.isversionofjnlissue | 6 | |
dc.relation.isversionofjnldate | 2012 | |
dc.relation.isversionofjnlpages | 1167-1180 | |
dc.relation.isversionofdoi | http://dx.doi.org/10.1007/s11222-011-9288-2 | |
dc.identifier.urlsite | https://arxiv.org/abs/1101.0955 | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Springer | |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |