• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Why approximate Bayesian computational (ABC) methods cannot handle model choice problems

Pillai, Natesh S.; Marin, Jean-Michel; Robert, Christian P. (2011-01), Why approximate Bayesian computational (ABC) methods cannot handle model choice problems. https://basepub.dauphine.fr/handle/123456789/5728

Type
Document de travail / Working paper
External document link
http://fr.arXiv.org/abs/1101.5091
Date
2011-01
Publisher
Université Paris-Dauphine
Published in
Paris
Pages
20
Metadata
Show full item record
Author(s)
Pillai, Natesh S.
Marin, Jean-Michel cc
Robert, Christian P.
Abstract (EN)
Approximate Bayesian computation (ABC), also known as likelihood-free methods, have become a favourite tool for the analysis of complex stochastic models, primarily in population genetics but also in financial analyses. We advocated in Grelaud et al. (2009) the use of ABC for Bayesian model choice in the specific case of Gibbs random fields (GRF), relying on a sufficiency property mainly enjoyed by GRFs to show that the approach was legitimate. Despite having previously suggested the use of ABC for model choice in a wider range of models in the DIY ABC software (Cornuet et al., 2008), we present theoretical evidence that the general use of ABC for model choice is fraught with danger in the sense that no amount of computation, however large, can guarantee a proper approximation of the posterior probabilities of the models under comparison.
Subjects / Keywords
sufficiency; Bayes factor; model choice; ABC
JEL
C11 - Bayesian Analysis: General

Related items

Showing items related by title and author.

  • Thumbnail
    Lack of confidence in approximate Bayesian computation model choice 
    Robert, Christian P.; Cornuet, Jean-Marie; Marin, Jean-Michel; Pillai, Natesh S. (2011) Article accepté pour publication ou publié
  • Thumbnail
    Relevant statistics for Bayesian model choice 
    Rousseau, Judith; Robert, Christian P.; Pillai, Natesh S.; Marin, Jean-Michel (2014) Article accepté pour publication ou publié
  • Thumbnail
    Evaluating statistic appropriateness for Bayesian model choice 
    Rousseau, Judith; Robert, Christian P.; Pillai, Natesh S.; Marin, Jean-Michel (2011) Document de travail / Working paper
  • Thumbnail
    Approximate Bayesian Computational methods 
    Marin, Jean-Michel; Pudlo, Pierre; Robert, Christian P.; Ryder, Robin J. (2012) Article accepté pour publication ou publié
  • Thumbnail
    ABC likelihood-free methods for model choice in Gibbs random fields 
    Grelaud, Aude; Robert, Christian P.; Marin, Jean-Michel; Rodolphe, François; Taly, Jean-François (2009) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo