Why approximate Bayesian computational (ABC) methods cannot handle model choice problems
dc.contributor.author | Pillai, Natesh S. | |
dc.contributor.author | Marin, Jean-Michel
HAL ID: 9121 ORCID: 0000-0001-7451-9719 | |
dc.contributor.author | Robert, Christian P. | |
dc.date.accessioned | 2011-03-07T10:41:44Z | |
dc.date.available | 2011-03-07T10:41:44Z | |
dc.date.issued | 2011-01 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/5728 | |
dc.language.iso | en | en |
dc.subject | sufficiency | en |
dc.subject | Bayes factor | en |
dc.subject | model choice | en |
dc.subject | ABC | en |
dc.subject.ddc | 519 | en |
dc.subject.classificationjel | C11 | en |
dc.title | Why approximate Bayesian computational (ABC) methods cannot handle model choice problems | en |
dc.type | Document de travail / Working paper | |
dc.contributor.editoruniversityother | Department of Statistics, Harvard University Harvard university (Cambridge, USA);États-Unis | |
dc.contributor.editoruniversityother | Institut de Mathématiques et de Modélisation de Montpellier (I3M) CNRS : UMR5149 – Université Montpellier II - Sciences et Techniques du Languedoc;France | |
dc.contributor.editoruniversityother | Institut Universitaire de France (IUF) Ministère de l'Enseignement Supérieur et de la Recherche Scientifique;France | |
dc.contributor.editoruniversityother | Centre de Recherche en Économie et Statistique (CREST) INSEE – École Nationale de la Statistique et de l'Administration Économique;France | |
dc.description.abstracten | Approximate Bayesian computation (ABC), also known as likelihood-free methods, have become a favourite tool for the analysis of complex stochastic models, primarily in population genetics but also in financial analyses. We advocated in Grelaud et al. (2009) the use of ABC for Bayesian model choice in the specific case of Gibbs random fields (GRF), relying on a sufficiency property mainly enjoyed by GRFs to show that the approach was legitimate. Despite having previously suggested the use of ABC for model choice in a wider range of models in the DIY ABC software (Cornuet et al., 2008), we present theoretical evidence that the general use of ABC for model choice is fraught with danger in the sense that no amount of computation, however large, can guarantee a proper approximation of the posterior probabilities of the models under comparison. | en |
dc.publisher.name | Université Paris-Dauphine | en |
dc.publisher.city | Paris | en |
dc.identifier.citationpages | 20 | en |
dc.identifier.urlsite | http://fr.arXiv.org/abs/1101.5091 | en |
dc.description.sponsorshipprivate | oui | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |