• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Exploring a physico-chemical multi-array explanatory model with a new multiple covariance-based technique: Structural equation exploratory regression

Bry, Xavier; Verron, Thomas; Cazes, Pierre (2009), Exploring a physico-chemical multi-array explanatory model with a new multiple covariance-based technique: Structural equation exploratory regression, Analytica Chimica Acta, 642, 1-2, p. 45-58. http://dx.doi.org/10.1016/j.aca.2009.03.013

Type
Article accepté pour publication ou publié
Date
2009
Journal name
Analytica Chimica Acta
Volume
642
Number
1-2
Publisher
Elsevier
Pages
45-58
Publication identifier
http://dx.doi.org/10.1016/j.aca.2009.03.013
Metadata
Show full item record
Author(s)
Bry, Xavier
Verron, Thomas
Cazes, Pierre
Abstract (EN)
In this work, we consider chemical and physical variable groups describing a common set of observations (cigarettes). One of the groups, minor smoke compounds (minSC), is assumed to depend on the others (minSC predictors). PLS regression (PLSR) of m inSC on the set of all predictors appears not to lead to a satisfactory analytic model, because it does not take into account the expert’s knowledge. PLS path modeling (PLSPM) does not use the multidimensional structure of predictor groups. Indeed, the expert needs to separate the influence of several pre-designed predictor groups on minSC, in order to see what dimensions this influence involves. To meet these needs, we consider a multi-group component-regression model, and propose a method to extract from each group several strong uncorrelated components that fit the model. Estimation is based on a global multiple covariance criterion, used in combination with an appropriate nesting approach. Compared to PLSR and PLSPM, the structural equation exploratory regression (SEER) we propose fully uses predictor group complementarity, both conceptually and statistically, to predict the dependent group.
Subjects / Keywords
SEER; Structural equation models; PLS regression; PLS path modeling; Multi-block component regression model; Latent variables; Linear regression

Related items

Showing items related by title and author.

  • Thumbnail
    A multiple covariance approach to PLS regression with several predictor groups: Structural Equation Exploratory Regression 
    Bry, Xavier; Verron, Thomas; Cazes, Pierre (2008) Document de travail / Working paper
  • Thumbnail
    THEME-SEER: a multidimensional exploratory technique to analyze a structural model using an extended covariance criterion 
    Cazes, Pierre; Redont, Patrick; Verron, Thomas; Bry, Xavier (2012) Article accepté pour publication ou publié
  • Thumbnail
    Un critère de covariance multiple permettant l'extension de la régression PLS à plusieurs groupes prédicteurs 
    Bry, Xavier; Verron, Thomas; Cazes, Pierre (2009) Communication / Conférence
  • Thumbnail
    Nouvelle démonstration et généralisation de la formule de Kanto et Puntanen sur les corrélations entre résidus des régressions linéaires 
    Der Megreditchian, Guy; Cazes, Pierre (1988) Article accepté pour publication ou publié
  • Thumbnail
    The construction of discourses on management techniques : Exploratory study based on a snapshot of the consultants’ discourses on "5 steps" 
    Canet, Emilie; Challe, Odile; David, Albert; Trotignon, Claire (2011) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo