Model selection and randomization for weakly dependent time series forecasting
Wintenberger, Olivier; Alquier, Pierre (2009), Model selection and randomization for weakly dependent time series forecasting, 41èmes Journées de Statistique, SFdS, Bordeaux, 2009, Bordeaux, France, France
Type
Communication / ConférenceExternal document link
http://hal.inria.fr/inria-00386733/en/Date
2009Conference title
41èmes Journées de Statistique, SFdS, BordeauxConference date
2009Conference city
Bordeaux, FranceConference country
FrancePages
6
Metadata
Show full item recordAbstract (EN)
Observing a stationary time series, we propose in this paper new two steps procedures for predicting the next value of the time series. Following machine learning theory paradigm, the first step consists in determining randomized estimators, or "experts", in (possibly numerous) different predictive models. In the second step estimators are obtained by model selection or randomization associated with exponential weights of these experts. We prove Oracle inequalities for both estimators and provide some applications for linear, artificial Neural Networks and additive non-parametric predictors.Subjects / Keywords
StatisticsRelated items
Showing items related by title and author.
-
Alquier, Pierre; Wintenberger, Olivier (2012) Article accepté pour publication ou publié
-
Wintenberger, Olivier (2010) Article accepté pour publication ou publié
-
Wintenberger, Olivier; Li, Xiaoyin; Alquier, Pierre (2013) Article accepté pour publication ou publié
-
Wintenberger, Olivier; Alquier, Pierre (2012) Document de travail / Working paper
-
Cai, Sixiang; Wintenberger, Olivier (2011) Communication / Conférence