Weighted coloring on planar, bipartite and split graphs: complexity and improved approximation
de Werra, Dominique; Demange, Marc; Escoffier, Bruno; Monnot, Jérôme; Paschos, Vangelis (2004), Weighted coloring on planar, bipartite and split graphs: complexity and improved approximation, in Fleischer, Rudolf; Trippen, Gerhard, Algorithms and Computation 15th International Symposium, ISAAC 2004, Hong Kong, China, December 20-22, 2004, Proceedings, Springer : Berlin, p. 896-907. http://dx.doi.org/10.1007/978-3-540-30551-4_76
Type
Communication / ConférenceExternal document link
http://hal.archives-ouvertes.fr/hal-00004074/fr/Date
2004Conference title
15th International Symposium on Algorithms and Computation (ISAAC'04)Conference date
2004-12Conference city
Hong-KongConference country
ChineBook title
Algorithms and Computation 15th International Symposium, ISAAC 2004, Hong Kong, China, December 20-22, 2004, ProceedingsBook author
Fleischer, Rudolf; Trippen, GerhardPublisher
Springer
Series title
Lecture Notes in Computer ScienceSeries number
3341Published in
Berlin
ISBN
978-3-540-24131-7
Number of pages
935Pages
896-907
Publication identifier
Metadata
Show full item recordAbstract (EN)
We study complexity and approximation of min weighted node coloring in planar, bipartite and split graphs. We show that this problem is NP-complete in planar graphs, even if they are triangle-free and their maximum degree is bounded above by 4. Then, we prove that min weighted node coloring is NP-complete in P8-free bipartite graphs, but polynomial for P5-free bipartite graphs. We next focus ourselves on approximability in general bipartite graphs and improve earlier approximation results by giving approximation ratios matching inapproximability bounds. We next deal with min weighted edge coloring in bipartite graphs. We show that this problem remains strongly NP-complete, even in the case where the input-graph is both cubic and planar. Furthermore, we provide an inapproximability bound of 7/6 – epsi, for any epsi > 0 and we give an approximation algorithm with the same ratio. Finally, we show that min weighted node coloring in split graphs can be solved by a polynomial time approximation scheme.Subjects / Keywords
Graph coloring; weighted node coloring; weighted edge coloring; approximability; bipartite graphs; split graphsRelated items
Showing items related by title and author.
-
Paschos, Vangelis; Monnot, Jérôme; Escoffier, Bruno; Demange, Marc; de Werra, Dominique (2009) Article accepté pour publication ou publié
-
Escoffier, Bruno; Demange, Marc; Paschos, Vangelis; de Werra, Dominique; Monnot, Jérôme (2008) Chapitre d'ouvrage
-
Escoffier, Bruno; Demange, Marc; de Werra, Dominique; Milis, Ioannis; Lucarelli, Giorgio; Paschos, Vangelis; Monnot, Jérôme (2008) Chapitre d'ouvrage
-
Demange, Marc; de Werra, Dominique; Monnot, Jérôme; Paschos, Vangelis (2002) Communication / Conférence
-
Murat, Cécile; Escoffier, Bruno; Della Croce, Federico; Bourgeois, Nicolas; Paschos, Vangelis (2009) Article accepté pour publication ou publié