Hölder Regularity for Viscosity Solutions of Fully Nonlinear, Local or Nonlocal, Hamilton–Jacobi Equations with Superquadratic Growth in the Gradient
Cardaliaguet, Pierre; Rainer, Catherine (2011), Hölder Regularity for Viscosity Solutions of Fully Nonlinear, Local or Nonlocal, Hamilton–Jacobi Equations with Superquadratic Growth in the Gradient, SIAM Journal on Control and Optimization, 49, 2, p. 555-573. http://dx.doi.org/10.1137/100784400
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00451248/fr/Date
2011Journal name
SIAM Journal on Control and OptimizationVolume
49Number
2Publisher
SIAM
Pages
555-573
Publication identifier
Metadata
Show full item recordAbstract (EN)
Viscosity solutions of fully nonlinear, local or nonlocal, Hamilton–Jacobi equations with a superquadratic growth in the gradient variable are proved to be Hölder continuous, with a modulus depending only on the growth of the Hamiltonian. The proof involves some representation formula for nonlocal Hamilton–Jacobi equations in terms of controlled jump processes and a weak reverse Hölder inequality.Subjects / Keywords
integro-differential Hamilton–Jacobi equations; viscosity solutions; Hölder continuity; degenerate parabolic equations; reverse Hölder inequalitiesRelated items
Showing items related by title and author.
-
Cardaliaguet, Pierre (2009) Article accepté pour publication ou publié
-
Silvestre, Luis; Cardaliaguet, Pierre (2012) Article accepté pour publication ou publié
-
Cannarsa, Piermarco; Cardaliaguet, Pierre (2010) Article accepté pour publication ou publié
-
Cardaliaguet, Pierre; Seeger, Benjamin (2021) Article accepté pour publication ou publié
-
Crandall, Michael G.; Lions, Pierre-Louis (1990) Article accepté pour publication ou publié