• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

The minimum bounded diameter spanning forest problem is log-approximable

Alfandari, Laurent (2001), The minimum bounded diameter spanning forest problem is log-approximable, Foundations of Computing and Decision Sciences, 26, 1, p. 123-132

Type
Article accepté pour publication ou publié
Date
2001
Journal name
Foundations of Computing and Decision Sciences
Volume
26
Number
1
Publisher
Politechnika Poznanska
Pages
123-132
Metadata
Show full item record
Author(s)
Alfandari, Laurent
Abstract (EN)
A number of location problems in networks with nodal demand consist in finding a minimum-cost partition of nodes. In the minimum bounded-diameter spanning forest problem, the network is partitioned into a minimum number of trees such that the weighted diameter of every tree in the partition does not exceed a given bound B. This problem models applications such as dividing a sales area into a minimum number of regions so that a salesman should not drive more than B kilometers or hours for visiting any two customers in a region. We show that it is equivalent to finding a least set of points in the network such that the distance from the farthest demand node to the set is bounded, which is the converse version of the well-known absolute k-center problem. Finally, we adapt the greedy Set Covering heuristic to our problem using an approach called "master-slave", in order to prove approximability within log-factor.
Subjects / Keywords
Partition; approximability; greedy Set Covering heuristic; minimum bounded-diameter spanning forest problem

Related items

Showing items related by title and author.

  • Thumbnail
    Approximating the minimum weighted rooted spanning tree with radius less than two 
    Alfandari, Laurent; Paschos, Vangelis (1997) Communication / Conférence
  • Thumbnail
    Local search for the minimum label spanning tree problem with bounded color classes 
    Bruggemann, Tobias; Monnot, Jérôme; Woeginger, Gerhard (2003) Article accepté pour publication ou publié
  • Thumbnail
    On the approximation of some spanning-arborescence problems 
    Alfandari, Laurent; Paschos, Vangelis (1998) Communication / Conférence
  • Thumbnail
    Approximating minimum spanning tree of depth 2 
    Alfandari, Laurent; Paschos, Vangelis (1999) Article accepté pour publication ou publié
  • Thumbnail
    Le problème de la forêt minimum de diamètre k 
    Alfandari, Laurent (1998) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo