dc.contributor.author | Klopp, Olga | |
dc.date.accessioned | 2011-04-18T09:38:44Z | |
dc.date.available | 2011-04-18T09:38:44Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/5982 | |
dc.language.iso | en | en |
dc.subject | low rank matrix estimation | en |
dc.subject | matrix completion | en |
dc.subject | recovery of the rank | en |
dc.subject | statistical learning | en |
dc.subject.ddc | 519 | en |
dc.title | Rank penalized estimators for high-dimensional matrices | en |
dc.type | Article accepté pour publication ou publié | |
dc.contributor.editoruniversityother | Centre de Recherche en Économie et Statistique (CREST) http://www.crest.fr/ INSEE – École Nationale de la Statistique et de l'Administration Économique;France | |
dc.description.abstracten | In this paper we consider the trace regression model. Assume that we observe a small set of entries or linear combinations of entries of an unknown matrix $A_0$ corrupted by noise. We propose a new rank penalized estimator of $A_0$. For this estimator we establish general oracle inequality for the prediction error both in probability and in expectation. We also prove upper bounds for the rank of our estimator. Then we apply our general results to the problem of matrix completion when our estimator has a particularly simple form: it is obtained by hard thresholding of the singular values of a matrix constructed from the observations. | en |
dc.relation.isversionofjnlname | Electronic Journal of Statistics | |
dc.relation.isversionofjnlvol | 5 | |
dc.relation.isversionofjnldate | 2011 | |
dc.relation.isversionofjnlpages | 1161-1183 | |
dc.relation.isversionofdoi | http://dx.doi.org/10.1214/11-EJS637 | |
dc.identifier.urlsite | http://hal.archives-ouvertes.fr/hal-00583884/fr/ | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Institute of Mathematical Statistics | |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |