Nonparametric estimation of the division rate of a size-structured population
Doumic, Marie; Hoffmann, Marc; Reynaud-Bouret, Patricia; Rivoirard, Vincent (2012), Nonparametric estimation of the division rate of a size-structured population, SIAM Journal on Numerical Analysis, 50, 2, p. 925-950. http://dx.doi.org/10.1137/110828344
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00578694/fr/Date
2012Journal name
SIAM Journal on Numerical AnalysisVolume
50Number
2Publisher
SIAM
Pages
925-950
Publication identifier
Metadata
Show full item recordAuthor(s)
Doumic, MarieLaboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
Hoffmann, Marc
Laboratoire d'Analyse et de Mathématiques Appliquées [LAMA]
Centre de Recherche en Économie et Statistique [CREST]
Reynaud-Bouret, Patricia
Laboratoire Jean Alexandre Dieudonné [JAD]
Rivoirard, Vincent
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We consider the problem of estimating the division rate of a size-structured population in a nonparametric setting. The size of the system evolves according to a transport-fragmentation equation: each individual grows with a given transport rate, and splits into two offsprings of the same size, following a binary fragmentation process with unknown division rate that depends on its size. In contrast to a deterministic inverse problem approach, as in (Perthame, Zubelli, 2007) and (Doumic, Perthame, Zubelli, 2009), we take in this paper the perspective of statistical inference: our data consists in a large sample of the size of individuals, when the evolution of the system is close to its time-asymptotic behavior, so that it can be related to the eigenproblem of the considered transport-fragmentation equation (see \cite{PR} for instance). By estimating statistically each term of the eigenvalue problem and by suitably inverting a certain linear operator (see previously quoted articles), we are able to construct a more realistic estimator of the division rate that achieves the same optimal error bound as in related deterministic inverse problems. Our procedure relies on kernel methods with automatic bandwidth selection. It is inspired by model selection and recent results of Goldenschluger and Lepski.Subjects / Keywords
Aggregation-fragmentation h equations; Adaptation; Oracle inequalities; Cell-division equation; Nonparametric density estimation; Statistical inverse problems; Lepski methodRelated items
Showing items related by title and author.
-
Tuleau-Malot, Christine; Grammont, Franck; Rivoirard, Vincent; Reynaud-Bouret, Patricia (2014) Article accepté pour publication ou publié
-
Lambert, Régis; Tuleau-Malot, Christine; Bessaih, Thomas; Rivoirard, Vincent; Bouret, Yann; Leresche, Nathalie; Reynaud-Bouret, Patricia (2018) Article accepté pour publication ou publié
-
Doumic, Marie; Hoffmann, Marc (2023) Chapitre d'ouvrage
-
Reynaud-Bouret, Patricia; Rivoirard, Vincent; Tuleau-Malot, Christine (2013) Communication / Conférence
-
Hoffmann, Marc; Olivier, Adélaïde (2016) Article accepté pour publication ou publié