
Entropy methods for kinetic models of traffic flow
Dolbeault, Jean; Illner, Reinhard (2003), Entropy methods for kinetic models of traffic flow, Communications in Mathematical Sciences, 1, 3, p. 409-421. http://projecteuclid.org/euclid.cms/1250880093
Type
Article accepté pour publication ou publiéDate
2003Journal name
Communications in Mathematical SciencesVolume
1Number
3Publisher
International Press
Pages
409-421
Publication identifier
Metadata
Show full item recordAbstract (EN)
In these notes we first introduce logarithmic entropy methods for time-dependent drift-diffusion equations and then consider a kinetic model of Vlasov-Fokker-Planck type for traffic flows. In the spatially homogeneous case the model reduces to a special type of nonlinear driftdiffusion equation which may permit the existence of several stationary states corresponding to the same density. Then we define general convex entropies and prove a convergence result for large times to steady states, even if more than one exists in the considered range of parameters, provided that some entropy estimates are uniformly bounded.Subjects / Keywords
Traffic flow; time-dependent diffusions; drift-diffusion equations; nonlinear friction and diffusion coefficients; entropy method; relative entropy; large time asymptoticsRelated items
Showing items related by title and author.
-
Agueh, Martial; Carlier, Guillaume; Illner, Reinhard (2015) Article accepté pour publication ou publié
-
Kowalczyk, Michal; Illner, Reinhard; Dolbeault, Jean; Bartier, Jean-Philippe (2007) Article accepté pour publication ou publié
-
Lange, Horst; Dolbeault, Jean; Illner, Reinhard (2002) Article accepté pour publication ou publié
-
Dolbeault, Jean (2021) Article accepté pour publication ou publié
-
Bonforte, Matteo; Dolbeault, Jean; Nazaret, Bruno; Simonov, Nikita (2022) Document de travail / Working paper