• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

On Singular Limits of Mean-Field Equations

Unterreiter, Andreas; Markowich, Peter; Dolbeault, Jean (2001), On Singular Limits of Mean-Field Equations, Archive for Rational Mechanics and Analysis, 158, 4, p. 319-351. http://dx.doi.org/10.1007/s002050100148

View/Open
2000-33.ps (802.2Kb)
singular.pdf (381.7Kb)
Type
Article accepté pour publication ou publié
Date
2001
Journal name
Archive for Rational Mechanics and Analysis
Volume
158
Number
4
Publisher
Springer
Pages
319-351
Publication identifier
http://dx.doi.org/10.1007/s002050100148
Metadata
Show full item record
Author(s)
Unterreiter, Andreas
Markowich, Peter
Dolbeault, Jean cc
Abstract (EN)
Mean-field equations arise as steady state versions of convection-diffusion systems where the convective field is determined by solution of a Poisson equation whose right-hand side is affine in the solutions of the convection-diffusion equations. In this paper we consider the repulsive coupling case for a system of two convection-diffusion equations. For general diffusivities we prove the existence of a unique solution of the mean-field equation by a variational analysis of a saddle point problem (usually without coercivity). Also we analyze the small-Debye-length limit and prove convergence to either the so-called charge-neutral case or to a double obstacle problem for the limiting potential depending on the data.
Subjects / Keywords
Mean-field equations; convection-diffusion systems; Poisson equation; small-Debye-length limit

Related items

Showing items related by title and author.

  • Thumbnail
    Nonlinear diffusions as limit of kinetic equations with relaxation collision kernels 
    Dolbeault, Jean; Markowich, Peter; Oelz, Dietmar; Schmeiser, Christian (2007) Article accepté pour publication ou publié
  • Thumbnail
    Méthodes variationnelles et topologiques pour l'étude de modèles non liénaires issus de la mécanique relativiste 
    Le Treust, Loïc (2013-07-05) Thèse
  • Thumbnail
    On the Long-Time Behavior of the Quantum Fokker-Planck Equation 
    Carrillo, José A.; Dolbeault, Jean; Markowich, Peter; Sparber, Christof (2004) Article accepté pour publication ou publié
  • Thumbnail
    Logarithmic estimates for mean-field models in dimension two and the Schrödinger–Poisson system 
    Dolbeault, Jean; Frank, Rupert L.; Jeanjean, Louis (2021) Article accepté pour publication ou publié
  • Thumbnail
    On Maxwellian equilibria of insulated semiconductors 
    Cafarelli, Luis; Dolbeault, Jean; Markowich, Peter; Schmeiser, Christian (2000) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo