
On Singular Limits of Mean-Field Equations
Unterreiter, Andreas; Markowich, Peter; Dolbeault, Jean (2001), On Singular Limits of Mean-Field Equations, Archive for Rational Mechanics and Analysis, 158, 4, p. 319-351. http://dx.doi.org/10.1007/s002050100148
Type
Article accepté pour publication ou publiéDate
2001Journal name
Archive for Rational Mechanics and AnalysisVolume
158Number
4Publisher
Springer
Pages
319-351
Publication identifier
Metadata
Show full item recordAbstract (EN)
Mean-field equations arise as steady state versions of convection-diffusion systems where the convective field is determined by solution of a Poisson equation whose right-hand side is affine in the solutions of the convection-diffusion equations. In this paper we consider the repulsive coupling case for a system of two convection-diffusion equations. For general diffusivities we prove the existence of a unique solution of the mean-field equation by a variational analysis of a saddle point problem (usually without coercivity). Also we analyze the small-Debye-length limit and prove convergence to either the so-called charge-neutral case or to a double obstacle problem for the limiting potential depending on the data.Subjects / Keywords
Mean-field equations; convection-diffusion systems; Poisson equation; small-Debye-length limitRelated items
Showing items related by title and author.
-
Dolbeault, Jean; Markowich, Peter; Oelz, Dietmar; Schmeiser, Christian (2007) Article accepté pour publication ou publié
-
Le Treust, Loïc (2013-07-05) Thèse
-
Carrillo, José A.; Dolbeault, Jean; Markowich, Peter; Sparber, Christof (2004) Article accepté pour publication ou publié
-
Dolbeault, Jean; Frank, Rupert L.; Jeanjean, Louis (2021) Article accepté pour publication ou publié
-
Cafarelli, Luis; Dolbeault, Jean; Markowich, Peter; Schmeiser, Christian (2000) Article accepté pour publication ou publié