dc.contributor.author | Moussafir, Jacques-Olivier | |
dc.date.accessioned | 2011-04-26T08:02:34Z | |
dc.date.available | 2011-04-26T08:02:34Z | |
dc.date.issued | 2000 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/6036 | |
dc.language.iso | en | en |
dc.subject | Hilbert base | en |
dc.subject | Klein polyhedron | en |
dc.subject.ddc | 515 | en |
dc.title | Sails and Hilbert bases | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | A Klein polyhedron is the convex hull of the nonzero integral points of a simplicial coneC⊂ ℝn. There are relationships between these polyhedra and the Hilbert bases of monoids of integral points contained in a simplicial cone.
In the two-dimensional case, the set of integral points lying on the boundary of a Klein polyhedron contains a Hilbert base of the corresponding monoid. In general, this is not the case if the dimension is greater than or equal to three (e.g., [2]). However, in the three-dimensional case, we give a characterization of the polyhedra that still have this property. We give an example of such a sail and show that our criterion does not hold if the dimension is four. | en |
dc.relation.isversionofjnlname | Functional Analysis and its Applications | |
dc.relation.isversionofjnlvol | 34 | en |
dc.relation.isversionofjnlissue | 2 | en |
dc.relation.isversionofjnldate | 2000 | |
dc.relation.isversionofjnlpages | 114-118 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1007/BF02482424 | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Springer | en |
dc.subject.ddclabel | Analyse | en |