
Non-linear rough heat equations
Deya, Aurélien; Gubinelli, Massimiliano; Tindel, Samy (2012), Non-linear rough heat equations, Probability Theory and Related Fields, 153, 1-2, p. 97-147. http://dx.doi.org/10.1007/s00440-011-0341-z
View/ Open
Type
Article accepté pour publication ou publiéDate
2012Journal name
Probability Theory and Related FieldsVolume
153Number
1-2Publisher
Springer
Pages
97-147
Publication identifier
Metadata
Show full item recordAbstract (EN)
This article is devoted to define and solve an evolution equation of the form dy t = Δy t dt + dX t (y t ), where Δ stands for the Laplace operator on a space of the form Lp(\mathbb Rn)Lp(Rn), and X is a finite dimensional noisy nonlinearity whose typical form is given by Xt(j)=åi=1N xit fi(j)Xt()=Ni=1xitfi() , where each x = (x (1), … , x (N)) is a γ-Hölder function generating a rough path and each f i is a smooth enough function defined on Lp(\mathbb Rn)Lp(Rn). The generalization of the usual rough path theory allowing to cope with such kind of system is carefully constructed.Subjects / Keywords
Rough paths theory; Stochastic PDEs; Fractional Brownian motionRelated items
Showing items related by title and author.
-
Torrecilla, Iván; Tindel, Samy; Gubinelli, Massimiliano (2014) Document de travail / Working paper
-
Tindel, Samy; Gubinelli, Massimiliano (2010) Article accepté pour publication ou publié
-
Gubinelli, Massimiliano; Lejay, Antoine (2009-05) Document de travail / Working paper
-
Gubinelli, Massimiliano (2012) Article accepté pour publication ou publié
-
Gubinelli, Massimiliano; Chouk, Khalil (2014) Document de travail / Working paper