• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Continuum tree asymptotics of discrete fragmentations and applications to phylogenetic models

Winkel, Matthias; Pitman, Jim; Miermont, Grégory; Haas, Bénédicte (2008), Continuum tree asymptotics of discrete fragmentations and applications to phylogenetic models, Annals of Probability, 36, 5, p. 1790-1837. http://dx.doi.org/10.1214/07-AOP377

Type
Article accepté pour publication ou publié
External document link
http://fr.arxiv.org/abs/math/0604350
Date
2008-09
Journal name
Annals of Probability
Volume
36
Number
5
Publisher
Institute of Mathematical Statistics
Pages
1790-1837
Publication identifier
http://dx.doi.org/10.1214/07-AOP377
Metadata
Show full item record
Author(s)
Winkel, Matthias
Pitman, Jim
Miermont, Grégory
Haas, Bénédicte
Abstract (EN)
Given any regularly varying dislocation measure, we identify a natural self-similar fragmentation tree as scaling limit of discrete fragmentation trees with unit edge lengths. As an application, we obtain continuum random tree limits of Aldous's beta-splitting models and Ford's alpha models for phylogenetic trees. This confirms in a strong way that the whole trees grow at the same speed as the mean height of a randomly chosen leaf.
Subjects / Keywords
Markov branching model; self-similar fragmentation; continuum random tree; phylogenetic tree

Related items

Showing items related by title and author.

  • Thumbnail
    Spinal partitions and invariance under re-rooting of continuum random trees 
    Winkel, Matthias; Pitman, Jim; Haas, Bénédicte (2009) Article accepté pour publication ou publié
  • Thumbnail
    The genealogy of self-similar fragmentations with negative index as a continuum random tree 
    Haas, Bénédicte; Miermont, Grégory (2004) Article accepté pour publication ou publié
  • Thumbnail
    Scaling limits of Markov branching trees, with applications to Galton-Watson and random unordered trees 
    Haas, Bénédicte; Miermont, Grégory (2012) Article accepté pour publication ou publié
  • Thumbnail
    Self-similar scaling limits of non-increasing Markov chains 
    Miermont, Grégory; Haas, Bénédicte (2011) Article accepté pour publication ou publié
  • Thumbnail
    Asymptotic behavior of solutions to the fragmentation equation with shattering: an approach via self-similar Markov processes 
    Haas, Bénédicte (2010) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo