Continuum tree asymptotics of discrete fragmentations and applications to phylogenetic models
Winkel, Matthias; Pitman, Jim; Miermont, Grégory; Haas, Bénédicte (2008), Continuum tree asymptotics of discrete fragmentations and applications to phylogenetic models, Annals of Probability, 36, 5, p. 1790-1837. http://dx.doi.org/10.1214/07-AOP377
Type
Article accepté pour publication ou publiéExternal document link
http://fr.arxiv.org/abs/math/0604350Date
2008-09Journal name
Annals of ProbabilityVolume
36Number
5Publisher
Institute of Mathematical Statistics
Pages
1790-1837
Publication identifier
Metadata
Show full item recordAbstract (EN)
Given any regularly varying dislocation measure, we identify a natural self-similar fragmentation tree as scaling limit of discrete fragmentation trees with unit edge lengths. As an application, we obtain continuum random tree limits of Aldous's beta-splitting models and Ford's alpha models for phylogenetic trees. This confirms in a strong way that the whole trees grow at the same speed as the mean height of a randomly chosen leaf.Subjects / Keywords
Markov branching model; self-similar fragmentation; continuum random tree; phylogenetic treeRelated items
Showing items related by title and author.
-
Winkel, Matthias; Pitman, Jim; Haas, Bénédicte (2009) Article accepté pour publication ou publié
-
Haas, Bénédicte; Miermont, Grégory (2004) Article accepté pour publication ou publié
-
Haas, Bénédicte; Miermont, Grégory (2012) Article accepté pour publication ou publié
-
Miermont, Grégory; Haas, Bénédicte (2011) Article accepté pour publication ou publié
-
Haas, Bénédicte (2010) Article accepté pour publication ou publié