• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Principal Component Analysis for Categorical Histogram Data: Some Open Directions of Research

Diday, Edwin (2011), Principal Component Analysis for Categorical Histogram Data: Some Open Directions of Research, in Fichet, Bernard; Piccolo, Domenico; Verde, Rosanna; Vichi, Maurizio, Classification and Multivariate Analysis for Complex Data Structures, Springer : Berlin, p. 3-15. http://dx.doi.org/10.1007/978-3-642-13312-1_1

Type
Chapitre d'ouvrage
Date
2011
Book title
Classification and Multivariate Analysis for Complex Data Structures
Book author
Fichet, Bernard; Piccolo, Domenico; Verde, Rosanna; Vichi, Maurizio
Publisher
Springer
Series title
Studies in Classification, Data Analysis, and Knowledge Organization
Published in
Berlin
ISBN
978-3-642-13311-4
Number of pages
473
Pages
3-15
Publication identifier
http://dx.doi.org/10.1007/978-3-642-13312-1_1
Metadata
Show full item record
Author(s)
Diday, Edwin
Abstract (EN)
In recent years, the analysis of symbolic data where the units are categories, classes or concepts described by interval, distributions, sets of categories and the like becomes a challenging task since many applicative fields generate massive amount of data that are difficult to store and to analyze with traditional techniques [1]. In this paper we propose a strategy for extending standard PCA to such data in the case where the variables values are “categorical histograms” (i.e. a set of categories called bins with their relative frequency). These variables are a special case of “modal” variables (see for example, Diday and Noirhomme [5]) or of “compositional” variables (Aitchison [1]) where the weights are not necessarily frequencies. First, we introduce “metabins” which mix together bins of the different histograms and enhance interpretability. Standard PCA applied on the bins of such data table loose the histograms constraints and suppose independencies between the bins but copulas takes care of the probabilities and the underlying dependencies. Then, we give several ways for representing the units (called “individuals”), the bins, the variables and the metabins when the number of categories is not the same for each variable. A way for representing the variation of the individuals, for getting histograms in output is given. Finally, some theoretical results allow the representation of the categorical histogram variables inside a hypercube covering the correlation sphere.
Subjects / Keywords
Multidimensional data; Data analysis

Related items

Showing items related by title and author.

  • Thumbnail
    Principal component analysis for interval-valued observations 
    Diday, Edwin; Douzal-Chouakria, Ahlame; Billard, Lynne (2011) Article accepté pour publication ou publié
  • Thumbnail
    Application of symbolic data analysis for structural modification assessment 
    Cury, Alexandre; Crémona, Christian; Diday, Edwin (2010) Article accepté pour publication ou publié
  • Thumbnail
    Analyse en axes principaux de variables symboliques de type histogramme 
    Diday, Edwin; Makosso Kallyth, Sun (2010) Communication / Conférence
  • Thumbnail
    Data analysis and informatics. Proceedings of the Second international Symposium on Data Analysis and Informatics, organised by the Institut de Recherche d'Informatique et d'automatique, Versailles, October 17-19, 1979. 
    Tomassone, R.; Pagès, J.P.; Lebart, Ludovic; Diday, Edwin (1979-10) Ouvrage
  • Thumbnail
    From the statistics of data to the statistics of knowledge: Symbolic data analysis. 
    Billard, Lynne; Diday, Edwin (2003) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo