
Laplace's method and high temperature generalized Hopfield models
Trashorras, José (2006), Laplace's method and high temperature generalized Hopfield models, Markov Processes and Related Fields, 12, 3, p. 583-626
View/ Open
Type
Article accepté pour publication ou publiéDate
2006Journal name
Markov Processes and Related FieldsVolume
12Number
3Pages
583-626
Metadata
Show full item recordAuthor(s)
Trashorras, JoséAbstract (EN)
We consider a class of disordered mean-field spin systems that generalize the Hopfield model with many patterns in two ways: (i) General multi-spin interactions are permitted and (ii) the disorder variables have arbitrary distri- butions with finite exponential moments. We prove that for all models in this class the high temperature normalized partition function fluctuates according to (essentially) the same log-normal distribution. We also give an analogue statement concerning the fluctuations of the joint distribution of the overlaps of any number of replicas. The key ingredient in the proof of these results is an asymptotic expansion of the Laplace’s integral that we perform up to the 1/N-term.Subjects / Keywords
Hopfield models; Laplace’s method; Large Deviations; Fluctuations; MartingalesRelated items
Showing items related by title and author.
-
Magaldi, Hugo (2022-12-13) Thèse
-
Darolles, Serge; Gouriéroux, Christian; Jasiak, Joann (2006-07) Article accepté pour publication ou publié
-
Schäfer, Christian (2012-11) Thèse
-
Caputo, Pietro; Toninelli, Fabio Lucio; Martinelli, Fabio; Simenhaus, François (2011) Article accepté pour publication ou publié
-
Toninelli, Fabio Lucio; Simenhaus, François; Lacoin, Hubert (2014) Article accepté pour publication ou publié