• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Homogenization of some particle systems with two-body interactions and of the dislocation dynamics

Forcadel, Nicolas; Imbert, Cyril; Monneau, Régis (2009), Homogenization of some particle systems with two-body interactions and of the dislocation dynamics, Discrete and Continuous Dynamical Systems. Series A, 23, 3, p. 785-826. http://dx.doi.org/10.3934/dcds.2009.23.785

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00140545/en/
Date
2009
Journal name
Discrete and Continuous Dynamical Systems. Series A
Volume
23
Number
3
Publisher
American Institute of Mathematical Sciences
Pages
785-826
Publication identifier
http://dx.doi.org/10.3934/dcds.2009.23.785
Metadata
Show full item record
Author(s)
Forcadel, Nicolas cc
Imbert, Cyril cc
Monneau, Régis
Abstract (EN)
This paper is concerned with the homogenization of some particle systems with two-body interactions in dimension one and of dislocation dynamics in higher dimensions. The dynamics of our particle systems are described by some ODEs. We prove that the rescaled ``cumulative distribution function'' of the particles converges towards the solution of a Hamilton-Jacobi equation. In the case when the interactions between particles have a slow decay at infinity as $1/x$, we show that this Hamilton-Jacobi equation contains an extra diffusion term which is a half Laplacian. We get the same result in the particular case where the repulsive interactions are exactly $1/x$, which creates some additional difficulties at short distances. We also study a higher dimensional generalisation of these particle systems which is particularly meaningful to describe the dynamics of dislocations lines. One main result of this paper is the discovery of a satisfactory mathematical formulation of this dynamics, namely a Slepcev formulation. We show in particular that the system of ODEs for particle systems can be naturally imbedded in this Slepcev formulation. Finally, with this formulation in hand, we get homogenization results which contain the particular case of particle systems.
Subjects / Keywords
Lévy operator; periodic homogenization; Hamilton-Jacobi equations; moving fronts; two-body interactions; integro-differential operators; dislocation dynamics; Slepcev formulation; Frenkel-Kontorova model; particle systems

Related items

Showing items related by title and author.

  • Thumbnail
    Recent results on dislocation dynamics and homogenization 
    Monneau, Régis; Imbert, Cyril; Forcadel, Nicolas (2008) Article accepté pour publication ou publié
  • Thumbnail
    Homogenization of accelerated Frenkel-Kontorova models with $n$ types of particles 
    Forcadel, Nicolas; Imbert, Cyril; Monneau, Régis (2012) Article accepté pour publication ou publié
  • Thumbnail
    Homogenization of First-Order Equations with (u/ε) -Periodic Hamiltonians. Part II: application to dislocations dynamics 
    Imbert, Cyril; Monneau, Régis; Rouy, Elisabeth (2007) Document de travail / Working paper
  • Thumbnail
    Homogenization of fully overdamped Frenkel-Kontorova models 
    Monneau, Régis; Imbert, Cyril; Forcadel, Nicolas (2009) Article accepté pour publication ou publié
  • Thumbnail
    Uniqueness and existence of spirals moving by forced mean curvature motion 
    Monneau, Régis; Imbert, Cyril; Forcadel, Nicolas (2012) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo