dc.contributor.author | Antoine, Xavier | |
dc.contributor.author | Darbas, Marion | |
dc.date.accessioned | 2011-04-29T14:41:30Z | |
dc.date.available | 2011-04-29T14:41:30Z | |
dc.date.issued | 2007 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/6117 | |
dc.language.iso | en | en |
dc.subject | Acoustic scattering | en |
dc.subject | Helmholtz equation | en |
dc.subject | second-kind Fredholm integral equation | en |
dc.subject | Krylov iterative solution | en |
dc.subject.ddc | 515 | en |
dc.title | Generalized Combined Field Integral Equations for the iterative solution of the three-dimensional Helmholtz equation | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | This paper addresses the derivation of new second-kind Fredholm combined field integral equations for the Krylov iterative solution of tridimensional acoustic scattering problems by a smooth closed surface. These integral equations need the introduction of suitable tangential square-root operators to regularize the formulations. Existence and uniqueness occur for these formulations. They can be interpreted as generalizations of the well-known Brakhage-Werner [A. Brakhage and P. Werner, Arch. Math. 16 (1965) 325–329] and Combined Field Integral Equations (CFIE) [R.F. Harrington and J.R. Mautz, Arch. Elektron. Übertragungstech (AEÜ) 32 (1978) 157–164]. Finally, some numerical experiments are performed to test their efficiency. | en |
dc.relation.isversionofjnlname | Modélisation mathématique et analyse numérique | |
dc.relation.isversionofjnlvol | 41 | en |
dc.relation.isversionofjnlissue | 1 | en |
dc.relation.isversionofjnldate | 2007 | |
dc.relation.isversionofjnlpages | 147-167 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1051/m2an:2007009 | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | EDP Sciences | en |
dc.subject.ddclabel | Analyse | en |