
Diffusive limit for finite velocity Boltzmann kinetic models
Lions, Pierre-Louis; Toscani, Giuseppe (1997), Diffusive limit for finite velocity Boltzmann kinetic models, Revista Matematica Iberoamericana, 13, 3, p. 473-513
View/ Open
Type
Article accepté pour publication ou publiéDate
1997Journal name
Revista Matematica IberoamericanaVolume
13Number
3Publisher
Real Sociedad Matemática Española
Pages
473-513
Metadata
Show full item recordAbstract (EN)
We investigate, in the diffusive scaling, the limit to the macroscopic description of finite-velocity Boltzmann kinetic models, where the rate coefficient in front of the collision operator is assumed to be dependent of the mass density. It is shown that in the limit the flux vanishes, while the evolution of the mass density is governed by a nonlinear parabolic equation of porous medium type. In the last part of the paper we show that our method adapts to prove the so-called Rosseland approximation in radiative transfer theory.Subjects / Keywords
Rosseland approximation; radiative transfer theory; nonlinear parabolic equations; Boltzmann kinetic modelsRelated items
Showing items related by title and author.
-
Lods, Bertrand; Mouhot, Clément; Toscani, Giuseppe (2008) Article accepté pour publication ou publié
-
Catto, Isabelle; Le Bris, Claude; Lions, Pierre-Louis (2001) Article accepté pour publication ou publié
-
Souganidis, Panagiotis E.; Perthame, Benoît; Lions, Pierre-Louis (2012) Communication / Conférence
-
Catto, Isabelle; Le Bris, Claude; Lions, Pierre-Louis (1998) Article accepté pour publication ou publié
-
Catto, Isabelle; Le Bris, Claude; Lions, Pierre-Louis (1996) Article accepté pour publication ou publié