Show simple item record

dc.contributor.authorLions, Pierre-Louis
dc.contributor.authorToscani, Giuseppe
dc.date.accessioned2011-05-02T14:11:09Z
dc.date.available2011-05-02T14:11:09Z
dc.date.issued1997
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/6137
dc.language.isoenen
dc.subjectRosseland approximationen
dc.subjectradiative transfer theoryen
dc.subjectnonlinear parabolic equationsen
dc.subjectBoltzmann kinetic modelsen
dc.subject.ddc515en
dc.titleDiffusive limit for finite velocity Boltzmann kinetic modelsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe investigate, in the diffusive scaling, the limit to the macroscopic description of finite-velocity Boltzmann kinetic models, where the rate coefficient in front of the collision operator is assumed to be dependent of the mass density. It is shown that in the limit the flux vanishes, while the evolution of the mass density is governed by a nonlinear parabolic equation of porous medium type. In the last part of the paper we show that our method adapts to prove the so-called Rosseland approximation in radiative transfer theory.en
dc.relation.isversionofjnlnameRevista Matematica Iberoamericana
dc.relation.isversionofjnlvol13en
dc.relation.isversionofjnlissue3en
dc.relation.isversionofjnldate1997
dc.relation.isversionofjnlpages473-513en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherReal Sociedad Matemática Españolaen
dc.subject.ddclabelAnalyseen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record