
Fermat Dynamics, Matrix Arithmetics, Finite Circles, and Finite Lobachevsky Planes
Arnold, Vladimir (2004), Fermat Dynamics, Matrix Arithmetics, Finite Circles, and Finite Lobachevsky Planes, Functional Analysis and its Applications, 38, 1, p. 1-13. http://dx.doi.org/10.1023/B:FAIA.0000024863.06462.68
View/ Open
Type
Article accepté pour publication ou publiéDate
2004Journal name
Functional Analysis and its ApplicationsVolume
38Number
1Publisher
Springer
Pages
1-13
Publication identifier
Metadata
Show full item recordAuthor(s)
Arnold, VladimirAbstract (EN)
Congruences generalizing Fermat's little theorem are proved for the traces of powers of integer matrices. Their relations to Lobachevsky geometries over finite fields and combinatorics of the matrix squaring operation as well as to the corresponding Riemann surfaces with their Kepler cubes are discussed.Subjects / Keywords
arithmetics; symmetric function; trace; de Sitter world; Fermat's little theorem; Lobachevsky geometry; Kepler cube; Riemann surfaceRelated items
Showing items related by title and author.
-
Arnold, Vladimir (2003) Article accepté pour publication ou publié
-
Arnold, Vladimir (2003) Article accepté pour publication ou publié
-
Arnold, Vladimir (2006) Article accepté pour publication ou publié
-
Arnold, Vladimir (2006) Article accepté pour publication ou publié
-
Arnold, Vladimir (2005) Article accepté pour publication ou publié