Show simple item record

dc.contributor.authorArnold, Vladimir
dc.date.accessioned2011-05-03T09:01:11Z
dc.date.available2011-05-03T09:01:11Z
dc.date.issued2004
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/6157
dc.language.isoenen
dc.subjectarithmeticsen
dc.subjectsymmetric functionen
dc.subjecttraceen
dc.subjectde Sitter worlden
dc.subjectFermat's little theoremen
dc.subjectLobachevsky geometryen
dc.subjectKepler cubeen
dc.subjectRiemann surfaceen
dc.subject.ddc515en
dc.titleFermat Dynamics, Matrix Arithmetics, Finite Circles, and Finite Lobachevsky Planesen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenCongruences generalizing Fermat's little theorem are proved for the traces of powers of integer matrices. Their relations to Lobachevsky geometries over finite fields and combinatorics of the matrix squaring operation as well as to the corresponding Riemann surfaces with their Kepler cubes are discussed.en
dc.relation.isversionofjnlnameFunctional Analysis and its Applications
dc.relation.isversionofjnlvol38en
dc.relation.isversionofjnlissue1en
dc.relation.isversionofjnldate2004
dc.relation.isversionofjnlpages1-13en
dc.relation.isversionofdoihttp://dx.doi.org/10.1023/B:FAIA.0000024863.06462.68en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelAnalyseen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record