
Classification of the Solutions of Semilinear Elliptic Problems in a Ball
Benguria, Rafael; Dolbeault, Jean; Esteban, Maria J. (2000), Classification of the Solutions of Semilinear Elliptic Problems in a Ball, Journal of Differential Equations, 167, 2, p. 438-466. http://dx.doi.org/10.1006/jdeq.2000.3792
View/ Open
Type
Article accepté pour publication ou publiéDate
2000Journal name
Journal of Differential EquationsVolume
167Number
2Publisher
Elsevier
Pages
438-466
Publication identifier
Metadata
Show full item recordAbstract (EN)
In this paper we fully describe the set of the positive and nodal (regular and singular) radial solutions of the superlinear elliptic PDE. −Δu=λu+|u|p−1 u in B1, u=0 on ∂B1, p>1, (1)without restriction on the range of λset membership, variantImage . Here, B1 is the unit ball in Image N. More precisely, in all subcritical, critical and supercritical cases, we analyze the possible singularities of radial solutions at the origin and the number of bounded and unbounded solutions. The solutions will be of three different types: bounded with a finite number of zeroes in (0, 1), singular at the origin, still with a finite number of zeroes and singular with sign changing oscillations at the origin.Subjects / Keywords
nodal solutions; oscillatory solutions; multiplicity branches; bifurcations; critical exponent; Pohozaev's identity; semilinear elliptic equations; removable singularitiesRelated items
Showing items related by title and author.
-
Ramaswamy, Mythily; Esteban, Maria J.; Dolbeault, Jean (2002) Article accepté pour publication ou publié
-
Dolbeault, Jean; Flores, Isabel (2007) Article accepté pour publication ou publié
-
Esteban, Maria J.; Giacomoni, Jacques (2000) Article accepté pour publication ou publié
-
Dolbeault, Jean; Esteban, Maria J.; Jankowiak, Gaspard (2015) Article accepté pour publication ou publié
-
Catto, Isabelle; Dolbeault, Jean; Benguria, Rafael; Monneau, Régis (2004) Article accepté pour publication ou publié