Show simple item record

dc.contributor.authorBenguria, Rafael
dc.contributor.authorDolbeault, Jean
HAL ID: 87
ORCID: 0000-0003-4234-2298
dc.contributor.authorEsteban, Maria J.
HAL ID: 738381
ORCID: 0000-0003-1700-9338
dc.date.accessioned2011-05-04T12:20:51Z
dc.date.available2011-05-04T12:20:51Z
dc.date.issued2000
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/6172
dc.language.isoenen
dc.subjectnodal solutionsen
dc.subjectoscillatory solutionsen
dc.subjectmultiplicity branchesen
dc.subjectbifurcationsen
dc.subjectcritical exponenten
dc.subjectPohozaev's identityen
dc.subjectsemilinear elliptic equationsen
dc.subjectremovable singularitiesen
dc.subject.ddc515en
dc.titleClassification of the Solutions of Semilinear Elliptic Problems in a Ballen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenIn this paper we fully describe the set of the positive and nodal (regular and singular) radial solutions of the superlinear elliptic PDE. −Δu=λu+|u|p−1 u in B1, u=0 on ∂B1, p>1, (1)without restriction on the range of λset membership, variantImage . Here, B1 is the unit ball in Image N. More precisely, in all subcritical, critical and supercritical cases, we analyze the possible singularities of radial solutions at the origin and the number of bounded and unbounded solutions. The solutions will be of three different types: bounded with a finite number of zeroes in (0, 1), singular at the origin, still with a finite number of zeroes and singular with sign changing oscillations at the origin.en
dc.relation.isversionofjnlnameJournal of Differential Equations
dc.relation.isversionofjnlvol167en
dc.relation.isversionofjnlissue2en
dc.relation.isversionofjnldate2000
dc.relation.isversionofjnlpages438-466en
dc.relation.isversionofdoihttp://dx.doi.org/10.1006/jdeq.2000.3792en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherElsevieren
dc.subject.ddclabelAnalyseen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record