
L1 and L8 intermediate asymptotics for scalar conservation laws
Dolbeault, Jean; Escobedo, Miguel (2005), L1 and L8 intermediate asymptotics for scalar conservation laws, Asymptotic Analysis, 41, 3-4, p. 189-213
Type
Article accepté pour publication ou publiéDate
2005Journal name
Asymptotic AnalysisVolume
41Number
3-4Publisher
IOS Press
Pages
189-213
Metadata
Show full item recordAbstract (EN)
In this paper, using entropy techniques, we study the rate of convergence of nonnegative solutions of a simple scalar conservation law to their asymptotic states in a weighted L1 norm. After an appropriate rescaling and for a well chosen weight, we obtain an exponential rate of convergence. Written in the original coordinates, this provides intermediate asymptotics estimates in L1, with an algebraic rate. We also prove a uniform convergence result on the support of the solutions, provided the initial data is compactly supported and has an appropriate behaviour on a neighborhood of the lower end of its support.Subjects / Keywords
scalar conservation laws; asymptotics; entropy; shocks; weighted L1 norm; self-similar solutions; N-waves; time-dependent rescaling; Rankine-Hugoniot condition; uniform convergence; graph convergenceRelated items
Showing items related by title and author.
-
Bartier, Jean-Philippe; Blanchet, Adrien; Dolbeault, Jean; Escobedo, Miguel (2011) Article accepté pour publication ou publié
-
Fernandez, Javier; Escobedo, Miguel; Dolbeault, Jean; Blanchet, Adrien (2010) Article accepté pour publication ou publié
-
Biler, Piotr; Dolbeault, Jean; Esteban, Maria J. (2002) Article accepté pour publication ou publié
-
Stationary solutions, intermediate asymptotics and large-time behaviour of type II Streater's models Karch, Grzegorz; Biler, Piotr; Dolbeault, Jean; Esteban, Maria J. (2001) Article accepté pour publication ou publié
-
Convergence of MUSCL and filtered schemes for scalar conservation laws and Hamilton-Jacobi equations Lions, Pierre-Louis; Souganidis, Panagiotis E. (1995) Article accepté pour publication ou publié