A functional central limit theorem for the M/GI/infinity queue
Decreusefond, Laurent; Moyal, Pascal (2008), A functional central limit theorem for the M/GI/infinity queue, The Annals of Applied Probability, 18, 6, p. 2156-2178. http://dx.doi.org/10.1214/08-AAP518
Type
Article accepté pour publication ou publiéExternal document link
http://fr.arxiv.org/abs/math/0608258Date
2008Journal name
The Annals of Applied ProbabilityVolume
18Number
6Publisher
Institute of Mathematical statistics
Pages
2156-2178
Publication identifier
Metadata
Show full item recordAbstract (EN)
In this paper, we present a functional fluid limit theorem and a functional central limit theorem for a queue with an infinity of servers M/GI/$\infty$. The system is represented by a point-measure valued process keeping track of the remaining processing times of the customers in service. The convergence in law of a sequence of such processes is proved by compactness-uniqueness methods, and the deterministic fluid limit is the solution of an integrated equation in the space $\S^{\prime}$ of tempered distributions. We then establish the corresponding central limit theorem, i.e. the approximation of the normalized error process by a $\S^{\prime}$-valued diffusion.Subjects / Keywords
queueing theory; pure delay system; central limit theorem; fluid limit; Measure-valued Markov processRelated items
Showing items related by title and author.
-
Moyal, Pascal; Decreusefond, Laurent (2008) Article accepté pour publication ou publié
-
Moyal, Pascal; Dhersin, Jean-Stéphane; Decreusefond, Laurent; Tran, Viet Chi (2012) Article accepté pour publication ou publié
-
Moyal, Pascal (2007) Article accepté pour publication ou publié
-
Landim, Claudio; Jara, Milton (2008) Article accepté pour publication ou publié
-
Komorowski, Tomasz; Olla, Stefano (2003) Article accepté pour publication ou publié