• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

A Viscoelastic Model with Non-local Damping: Application to the Human Lungs

Grandmont, Céline; Maury, Bertrand; Meunier, Nicolas (2006), A Viscoelastic Model with Non-local Damping: Application to the Human Lungs, Modélisation mathématique et analyse numérique, 40, p. 201-224. http://dx.doi.org/10.1051/m2an:2006009

View/Open
2005-32.pdf (232.3Kb)
Type
Article accepté pour publication ou publié
Date
2006
Journal name
Modélisation mathématique et analyse numérique
Number
40
Publisher
EDP Sciences
Pages
201-224
Publication identifier
http://dx.doi.org/10.1051/m2an:2006009
Metadata
Show full item record
Author(s)
Grandmont, Céline
Maury, Bertrand
Meunier, Nicolas
Abstract (EN)
In this paper we elaborate a model to describe some aspects of the human lung considered as a continuous, deformable, medium. To that purpose, we study the asymptotic behavior of a spring-mass system with dissipation. The key feature of our approach is the nature of this dissipation phenomena, which is related here to the flow of a viscous fluid through a dyadic tree of pipes (the branches), each exit of which being connected to an air pocket (alvelola) delimited by two successive masses. The first part focuses on the relation between fluxes and pressures at the outlets of a dyadic tree, assuming the flow within the tree obeys Poiseuille-like laws. In a second part, which contains the main convergence result, we intertwine the outlets of the tree with a spring-mass array. Letting again the number of generations (and therefore the number of masses) go to infinity, we show that the solutions to the finite dimensional problems converge in a weak sense to the solution of a wave-like partial differential equation with a non-local dissipative term.
Subjects / Keywords
Poiseuille flow; dyadic tree; kernel operator; damped wave equation; human lungs

Related items

Showing items related by title and author.

  • Thumbnail
    Piecewise-diffeomorphic image registration: Application to the motion estimation between 3D CT lung images with sliding conditions 
    Risser, Laurent; Vialard, François-Xavier; Baluwala, Habib Y.; Schnabel, Julia A. (2013) Article accepté pour publication ou publié
  • Thumbnail
    Convergence of capillary fluid models: from the non-local to the local Korteweg model 
    Haspot, Boris; Charve, Frédéric (2011) Article accepté pour publication ou publié
  • Thumbnail
    On a Lagrangian method for the convergence from a non-local to a local Korteweg capillary fluid model 
    Charve, Frédéric; Haspot, Boris (2013) Article accepté pour publication ou publié
  • Thumbnail
    Fourier Descriptors Based on the Structure of the Human Primary Visual Cortex with Applications to Object Recognition 
    Bohi, Amine; Prandi, Dario; Guis, Vincente; Bouchara, Frédéric; Gauthier, Jean-Paul (2016) Article accepté pour publication ou publié
  • Thumbnail
    Placing a monetary value on the human health component of zoonotic diseases- A methodological note with an application to cysticercosis in Africa 
    Herrera Araujo, Daniel; Mikecz, O.; PicaCiamarra, U. (2020) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo