
A Viscoelastic Model with Non-local Damping: Application to the Human Lungs
Grandmont, Céline; Maury, Bertrand; Meunier, Nicolas (2006), A Viscoelastic Model with Non-local Damping: Application to the Human Lungs, Modélisation mathématique et analyse numérique, 40, p. 201-224. http://dx.doi.org/10.1051/m2an:2006009
Voir/Ouvrir
Type
Article accepté pour publication ou publiéDate
2006Nom de la revue
Modélisation mathématique et analyse numériqueNuméro
40Éditeur
EDP Sciences
Pages
201-224
Identifiant publication
Métadonnées
Afficher la notice complèteRésumé (EN)
In this paper we elaborate a model to describe some aspects of the human lung considered as a continuous, deformable, medium. To that purpose, we study the asymptotic behavior of a spring-mass system with dissipation. The key feature of our approach is the nature of this dissipation phenomena, which is related here to the flow of a viscous fluid through a dyadic tree of pipes (the branches), each exit of which being connected to an air pocket (alvelola) delimited by two successive masses. The first part focuses on the relation between fluxes and pressures at the outlets of a dyadic tree, assuming the flow within the tree obeys Poiseuille-like laws. In a second part, which contains the main convergence result, we intertwine the outlets of the tree with a spring-mass array. Letting again the number of generations (and therefore the number of masses) go to infinity, we show that the solutions to the finite dimensional problems converge in a weak sense to the solution of a wave-like partial differential equation with a non-local dissipative term.Mots-clés
Poiseuille flow; dyadic tree; kernel operator; damped wave equation; human lungsPublications associées
Affichage des éléments liés par titre et auteur.
-
Risser, Laurent; Vialard, François-Xavier; Baluwala, Habib Y.; Schnabel, Julia A. (2013) Article accepté pour publication ou publié
-
Haspot, Boris; Charve, Frédéric (2011) Article accepté pour publication ou publié
-
Charve, Frédéric; Haspot, Boris (2013) Article accepté pour publication ou publié
-
Bohi, Amine; Prandi, Dario; Guis, Vincente; Bouchara, Frédéric; Gauthier, Jean-Paul (2016) Article accepté pour publication ou publié
-
Herrera Araujo, Daniel; Mikecz, O.; PicaCiamarra, U. (2020) Article accepté pour publication ou publié