Arithmetics of binary quadratic forms, symmetry of their continued fractions and geometry of their de Sitter world
Arnold, Vladimir (2003), Arithmetics of binary quadratic forms, symmetry of their continued fractions and geometry of their de Sitter world, Bulletin of the Brazilian Mathematical Society, 34, 1, p. 1-42. http://dx.doi.org/10.1007/s00574-003-0001-8
View/ Open
Type
Article accepté pour publication ou publiéDate
2003Journal name
Bulletin of the Brazilian Mathematical SocietyVolume
34Number
1Publisher
Springer
Pages
1-42
Publication identifier
Metadata
Show full item recordAuthor(s)
Arnold, VladimirAbstract (EN)
This article concerns the arithmetics of binary quadratic forms with integer coefficients, the De Sitter's world and the continued fractions. Given a binary quadratic forms with integer coefficients, the set of values attaint at integer points is always a multiplicative "tri-group". Sometimes it is a semigroup (in such case the form is said to be perfect). The diagonal forms are specially studied providing sufficient conditions for their perfectness. This led to consider hyperbolic reflection groups and to find that the continued fraction of the square root of a rational number is palindromic. The relation of these arithmetics with the geometry of the modular group action on the Lobachevski plane (for elliptic forms) and on the relativistic De Sitter's world (for the hyperbolic forms) is discussed. Finally, several estimates of the growth rate of the number of equivalence classes versus the discriminant of the form are given.Subjects / Keywords
arithmetics; quadratic forms; De Sitter's world; continued fraction; semigroup; tri-groupRelated items
Showing items related by title and author.
-
Arnold, Vladimir (2003) Article accepté pour publication ou publié
-
Arnold, Vladimir (2004) Article accepté pour publication ou publié
-
Karpenkov, Oleg (2007) Article accepté pour publication ou publié
-
Arnold, Vladimir (1999) Chapitre d'ouvrage
-
Karpenkov, Oleg (2006) Article accepté pour publication ou publié