• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Iterated importance sampling in missing data problems

Celeux, Gilles; Marin, Jean-Michel; Robert, Christian P. (2006), Iterated importance sampling in missing data problems, Computational Statistics and Data Analysis, 50, 12, p. 3386-3404. http://dx.doi.org/10.1016/j.csda.2005.07.018

View/Open
2003-26.pdf (1.314Mb)
Type
Article accepté pour publication ou publié
Date
2006
Journal name
Computational Statistics and Data Analysis
Volume
50
Number
12
Publisher
Elsevier
Pages
3386-3404
Publication identifier
http://dx.doi.org/10.1016/j.csda.2005.07.018
Metadata
Show full item record
Author(s)
Celeux, Gilles
Marin, Jean-Michel cc
Robert, Christian P.
Abstract (EN)
Missing variable models are typical benchmarks for new computational techniques in that the ill-posed nature of missing variable models offer a challenging testing ground for these techniques. This was the case for the EM algorithm and the Gibbs sampler, and this is also true for importance sampling schemes. A population Monte Carlo scheme taking advantage of the latent structure of the problem is proposed. The potential of this approach and its specifics in missing data problems are illustrated in settings of increasing difficulty, in comparison with existing approaches. The improvement brought by a general Rao–Blackwellisation technique is also discussed.
Subjects / Keywords
Adaptive algorithms; Bayesian inference; Latent variable models; Population Monte Carlo; Rao–Blackwellisation; Stochastic volatility model
JEL
C15 - Statistical Simulation Methods: General

Related items

Showing items related by title and author.

  • Thumbnail
    Regularization in regression: comparing Bayesian and frequentist methods in a poorly informative situation 
    Celeux, Gilles; El Anbari, Mohammed; Marin, Jean-Michel; Robert, Christian P. (2012) Article accepté pour publication ou publié
  • Thumbnail
    Computational Solutions for Bayesian Inference in Mixture Models 
    Robert, Christian P.; Celeux, Gilles; Kamary, Kaniav; Malsiner-Walli, Gertraud; Marin, Jean-Michel (2019) Chapitre d'ouvrage
  • Thumbnail
    Some discussions on the Read Paper Beyond subjective and objective in statistics" by A. Gelman and C. Hennig" 
    Celeux, Gilles; Jewson, Jack; Josse, Julie; Marin, Jean-Michel; Robert, Christian P. (2017) Document de travail / Working paper
  • Thumbnail
    Adaptive Importance Sampling in General Mixture Classes 
    Cappé, Olivier; Douc, Randal; Guillin, Arnaud; Marin, Jean-Michel; Robert, Christian P. (2008) Article accepté pour publication ou publié
  • Thumbnail
    Sélection bayésienne de variables en régression linéaire 
    Celeux, Gilles; Marin, Jean-Michel; Robert, Christian P. (2006) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo