
Iterated importance sampling in missing data problems
Celeux, Gilles; Marin, Jean-Michel; Robert, Christian P. (2006), Iterated importance sampling in missing data problems, Computational Statistics and Data Analysis, 50, 12, p. 3386-3404. http://dx.doi.org/10.1016/j.csda.2005.07.018
View/ Open
Type
Article accepté pour publication ou publiéDate
2006Journal name
Computational Statistics and Data AnalysisVolume
50Number
12Publisher
Elsevier
Pages
3386-3404
Publication identifier
Metadata
Show full item recordAbstract (EN)
Missing variable models are typical benchmarks for new computational techniques in that the ill-posed nature of missing variable models offer a challenging testing ground for these techniques. This was the case for the EM algorithm and the Gibbs sampler, and this is also true for importance sampling schemes. A population Monte Carlo scheme taking advantage of the latent structure of the problem is proposed. The potential of this approach and its specifics in missing data problems are illustrated in settings of increasing difficulty, in comparison with existing approaches. The improvement brought by a general Rao–Blackwellisation technique is also discussed.Subjects / Keywords
Adaptive algorithms; Bayesian inference; Latent variable models; Population Monte Carlo; Rao–Blackwellisation; Stochastic volatility modelRelated items
Showing items related by title and author.
-
Celeux, Gilles; El Anbari, Mohammed; Marin, Jean-Michel; Robert, Christian P. (2012) Article accepté pour publication ou publié
-
Robert, Christian P.; Celeux, Gilles; Kamary, Kaniav; Malsiner-Walli, Gertraud; Marin, Jean-Michel (2019) Chapitre d'ouvrage
-
Celeux, Gilles; Jewson, Jack; Josse, Julie; Marin, Jean-Michel; Robert, Christian P. (2017) Document de travail / Working paper
-
Cappé, Olivier; Douc, Randal; Guillin, Arnaud; Marin, Jean-Michel; Robert, Christian P. (2008) Article accepté pour publication ou publié
-
Celeux, Gilles; Marin, Jean-Michel; Robert, Christian P. (2006) Article accepté pour publication ou publié