Large Time Asymptotic of Nonlinear Drift-Diffusion Systems with Poisson Coupling
dc.contributor.author | Biler, Piotr | |
dc.contributor.author | Dolbeault, Jean
HAL ID: 87 ORCID: 0000-0003-4234-2298 | |
dc.contributor.author | Markowich, Peter | |
dc.date.accessioned | 2011-05-09T10:15:05Z | |
dc.date.available | 2011-05-09T10:15:05Z | |
dc.date.issued | 2001 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/6221 | |
dc.language.iso | en | en |
dc.subject | Nonlinear drift-diffusion systems | en |
dc.subject | Asymptotic behavior of solutions | en |
dc.subject | Logarithmic sobolev inequalities | en |
dc.subject | Fast diffusion | en |
dc.subject | Porous media | en |
dc.subject.ddc | 515 | en |
dc.title | Large Time Asymptotic of Nonlinear Drift-Diffusion Systems with Poisson Coupling | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | We study the asymptotic behavior as t→ +∞ of a system of densities of charged particles satisfying nonlinear drift-diffusion equations coupled by a damped Poisson equation for the drift-potential. In plasma physics applications the damping is caused by a spatio-temporal rescaling of an “unconfined” problem, which introduces a harmonic external potential of confinement. We present formal calculations (valid for smooth solutions) which extend the results known in the linear diffusion case to nonlinear diffusion of e.g. Fermi-Dirac or fast diffusion/porous media type. | en |
dc.relation.isversionofjnlname | Transport Theory and Statistical Physics | |
dc.relation.isversionofjnlvol | 30 | en |
dc.relation.isversionofjnlissue | 4-6 | en |
dc.relation.isversionofjnldate | 2001 | |
dc.relation.isversionofjnlpages | 521-536 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1081/TT-100105936 | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Taylor & Francis | en |
dc.subject.ddclabel | Analyse | en |