Show simple item record

dc.contributor.authorBiler, Piotr
dc.contributor.authorDolbeault, Jean
HAL ID: 87
ORCID: 0000-0003-4234-2298
dc.contributor.authorMarkowich, Peter
dc.date.accessioned2011-05-09T10:15:05Z
dc.date.available2011-05-09T10:15:05Z
dc.date.issued2001
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/6221
dc.language.isoenen
dc.subjectNonlinear drift-diffusion systemsen
dc.subjectAsymptotic behavior of solutionsen
dc.subjectLogarithmic sobolev inequalitiesen
dc.subjectFast diffusionen
dc.subjectPorous mediaen
dc.subject.ddc515en
dc.titleLarge Time Asymptotic of Nonlinear Drift-Diffusion Systems with Poisson Couplingen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe study the asymptotic behavior as t→ +∞ of a system of densities of charged particles satisfying nonlinear drift-diffusion equations coupled by a damped Poisson equation for the drift-potential. In plasma physics applications the damping is caused by a spatio-temporal rescaling of an “unconfined” problem, which introduces a harmonic external potential of confinement. We present formal calculations (valid for smooth solutions) which extend the results known in the linear diffusion case to nonlinear diffusion of e.g. Fermi-Dirac or fast diffusion/porous media type.en
dc.relation.isversionofjnlnameTransport Theory and Statistical Physics
dc.relation.isversionofjnlvol30en
dc.relation.isversionofjnlissue4-6en
dc.relation.isversionofjnldate2001
dc.relation.isversionofjnlpages521-536en
dc.relation.isversionofdoihttp://dx.doi.org/10.1081/TT-100105936en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherTaylor & Francisen
dc.subject.ddclabelAnalyseen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record