• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Sensitive versus classical singular perturbation problem via Fourier transform

Sanchez-Palencia, Evariste; Meunier, Nicolas (2006), Sensitive versus classical singular perturbation problem via Fourier transform, Mathematical Models and Methods in Applied Sciences, 16, 11, p. 1783-1816. http://dx.doi.org/10.1142/S0218202506001716

View/Open
2006-11.pdf (246.5Kb)
Type
Article accepté pour publication ou publié
Date
2006
Journal name
Mathematical Models and Methods in Applied Sciences
Volume
16
Number
11
Publisher
World Scientific
Pages
1783-1816
Publication identifier
http://dx.doi.org/10.1142/S0218202506001716
Metadata
Show full item record
Author(s)
Sanchez-Palencia, Evariste
Meunier, Nicolas
Abstract (EN)
We consider a class of singular perturbation elliptic boundary value problems depending on a parameter ε which are classical for ε > 0 but highly ill-posed for ε = 0 as the boundary condition does not satisfy the Shapiro–Lopatinskii condition. This kind of problems is motivated by certain situations in thin shell theory, but we only deal here with model problems and geometries allowing a Fourier transform treatment. We consider more general loadings and more singular perturbation terms than in previous works on the subject. The asymptotic process exhibits a complexification phenomenon: in some sense, the solution becomes more and more complicated as ε decreases, and the limit does not exist in classical distribution theory (it may only be described in spaces of analytical functionals not enjoying localization properties). This phenomenon is associated with the emergence of the new characteristic parameter |log ε|. Numerical experiments based on a formal asymptotics are presented, exhibiting features which are unusual in classical elliptic equations theory. We also give a Fourier transform treatment of classical singular perturbations in order to exhibit the drastic differences with the present situation.
Subjects / Keywords
Fourier transform treatment; classical singular perturbations

Related items

Showing items related by title and author.

  • Thumbnail
    Singular perturbation of optimal control problems on multi-domains 
    Rao, Zhiping; Forcadel, Nicolas (2014) Article accepté pour publication ou publié
  • Thumbnail
    Singular perturbations for deterministic control problems 
    Bensoussan, Alain (1987) Chapitre d'ouvrage
  • Thumbnail
    La transformation des problèmes publics au prisme des rapports entre Etat et professions. Le cas de la lutte contre les drogues et la toxicomanie 
    Bergeron, Henri; Fortané, Nicolas (2022) Chapitre d'ouvrage
  • Thumbnail
    A surjection theorem for singular perturbations with loss of derivatives 
    Ekeland, Ivar; Séré, Eric (2019) Document de travail / Working paper
  • Thumbnail
    Singular perturbations for differential equations and inclusions: An approach through constrained systems 
    Quincampoix, Marc (1998) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo