• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

A mixture representation of π with applications in Markov chain Monte Carlo and perfect sampling

Hobert, James P.; Robert, Christian P. (2004), A mixture representation of π with applications in Markov chain Monte Carlo and perfect sampling, The Annals of Applied Probability, 14, 3, p. 1295-1305. http://dx.doi.org/10.1214/105051604000000305

Type
Article accepté pour publication ou publié
Date
2004
Journal name
The Annals of Applied Probability
Volume
14
Number
3
Publisher
Institute of Mathematical Statistics
Pages
1295-1305
Publication identifier
http://dx.doi.org/10.1214/105051604000000305
Metadata
Show full item record
Author(s)
Hobert, James P.
Robert, Christian P.
Abstract (EN)
Let X={Xn:n=0,1,2,…} be an irreducible, positive recurrent Markov chain with invariant probability measure π. We show that if X satisfies a one-step minorization condition, then π can be represented as an infinite mixture. The distributions in the mixture are associated with the hitting times on an accessible atom introduced via the splitting construction of Athreya and Ney [Trans. Amer. Math. Soc. 245 (1978) 493–501] and Nummelin [Z. Wahrsch. Verw. Gebiete 43 (1978) 309–318]. When the small set in the minorization condition is the entire state space, our mixture representation of π reduces to a simple formula, first derived by Breyer and Roberts [Methodol. Comput. Appl. Probab. 3 (2001) 161–177] from which samples can be easily drawn. Despite the fact that the derivation of this formula involves no coupling or backward simulation arguments, the formula can be used to reconstruct perfect sampling algorithms based on coupling from the past (CFTP) such as Murdoch and Green’s [Scand. J. Statist. 25 (1998) 483–502] Multigamma Coupler and Wilson’s [Random Structures Algorithms 16 (2000) 85–113] Read-Once CFTP algorithm. In the general case where the state space is not necessarily 1-small, under the assumption that X satisfies a geometric drift condition, our mixture representation can be used to construct an arbitrarily accurate approximation to π from which it is straightforward to sample. One potential application of this approximation is as a starting distribution for a Markov chain Monte Carlo algorithm based on X.
Subjects / Keywords
Burn-in; drift condition; geometric ergodicity; Kac’s theorem; minorization condition; Multigamma Coupler; Read-Once CFTP; regeneration; split chain

Related items

Showing items related by title and author.

  • Thumbnail
    Improving the Convergence Properties of the Data Augmentation Algorithm with an Application to Bayesian Mixture Modelling 
    Robert, Christian P.; Roy, Vivekananda; Hobert, James P. (2011) Article accepté pour publication ou publié
  • Thumbnail
    Using a Markov Chain to Construct a Tractable Approximation of an Intractable Probability Distribution 
    Hobert, James P.; Jones, Galin L.; Robert, Christian P. (2006) Article accepté pour publication ou publié
  • Thumbnail
    Moralizing perfect sampling 
    Robert, Christian P.; Hobert, James P. (2001) Document de travail / Working paper
  • Thumbnail
    Rao–Blackwellisation in the Markov Chain Monte Carlo Era 
    Robert, Christian P.; Roberts, Gareth (2021) Article accepté pour publication ou publié
  • Thumbnail
    Reversible jump, birth-and-death and more general continuous time Markov chain Monte Carlo samplers 
    Cappé, Olivier; Robert, Christian P.; Ryden, Tobias (2003) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo