Level set approach for fractional mean curvature flows
Imbert, Cyril (2009), Level set approach for fractional mean curvature flows, Interfaces and free boundaries, 11, 1, p. 153-176
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00262386/en/Date
2009Journal name
Interfaces and free boundariesVolume
11Number
1Publisher
European Mathematical Society
Pages
153-176
Metadata
Show full item recordAbstract (EN)
This paper is concerned with the study of a geometric flow whose law involves a singular integral operator. This operator is used to define a non-local mean curvature of a set. Moreover the associated flow appears in two important applications: dislocation dynamics and phase field theory for fractional reaction-diffusion equations. It is defined by using the level set method. The main results of this paper are: on one hand, the proper level set formulation of the geometric flow; on the other hand, stability and comparison results for the geometric equation associated with the flow.Subjects / Keywords
fractional mean curvature; generalized flows; comparison principles; stability results; level set approach; dislocation dynamics; geometric flows; mean curvatureRelated items
Showing items related by title and author.
-
Repeated games for non-linear parabolic integro-differential equations and integral curvature flows Serfaty, Sylvia; Imbert, Cyril (2011) Article accepté pour publication ou publié
-
Monneau, Régis; Imbert, Cyril; Forcadel, Nicolas (2012) Article accepté pour publication ou publié
-
De Gennaro, Danièle; Kubin, Andrea; Kubin, Anna (2023) Article accepté pour publication ou publié
-
Chambolle, Antonin; Novaga, Matteo (2022) Article accepté pour publication ou publié
-
Imbert, Cyril; Souganidis, Panagiotis E. (2009) Document de travail / Working paper