Regularity of solutions for some variational problems subject to a convexity constraint
Lachand-Robert, Thomas; Carlier, Guillaume (2001), Regularity of solutions for some variational problems subject to a convexity constraint, Communications on Pure and Applied Mathematics, 54, 5, p. 583-594. http://dx.doi.org/10.1002/cpa.3
View/ Open
Type
Article accepté pour publication ou publiéDate
2001Journal name
Communications on Pure and Applied MathematicsVolume
54Number
5Publisher
John Wiley & Sons, Inc.
Pages
583-594
Publication identifier
Metadata
Show full item recordAbstract (EN)
We first study the minimizers, in the class of convex functions, of an elliptic functional with nonhomogeneous Dirichlet boundary conditions. We prove C1 regularity of the minimizers under the assumption that the upper envelope of admissible functions is C1. This condition is optimal at least when the functional depends only on the gradient [3]. We then give various extensions of this result. In Particular, we consider a problem without boundary conditions arising in an economic model introduced by Rochet and Choné in [4].Subjects / Keywords
Convexity constraint; Calcul variationnel; Variational calculus; Fonctions convexesRelated items
Showing items related by title and author.
-
Carlier, Guillaume; Lachand-Robert, Thomas; Maury, Bertrand (2001) Article accepté pour publication ou publié
-
Carlier, Guillaume; Dupuis, Xavier (2017) Article accepté pour publication ou publié
-
Carlier, Guillaume; Radice, Teresa (2019) Article accepté pour publication ou publié
-
Carlier, Guillaume (2002) Article accepté pour publication ou publié
-
Dana, Rose-Anne; Carlier, Guillaume (2005) Article accepté pour publication ou publié