The Use of Size Functions for Comparison of Shapes Through Differential Invariants
Dibos, Françoise; Frosini, Patrizio; Pasquignon, Denis (2004), The Use of Size Functions for Comparison of Shapes Through Differential Invariants, Journal of Mathematical Imaging and Vision, 21, 2, p. 107-118. http://dx.doi.org/10.1023/B:JMIV.0000035177.68567.3b
Voir/Ouvrir
Type
Article accepté pour publication ou publiéDate
2004Nom de la revue
Journal of Mathematical Imaging and VisionVolume
21Numéro
2Éditeur
Springer
Pages
107-118
Identifiant publication
Métadonnées
Afficher la notice complèteRésumé (EN)
For comparison of shapes under subgroups of the projective group, we can use a lot of invariants and especially differential invariants coming from multiscale analysis. But such invariants, as we have to compute curvature, are very sensitive to the noise induced by the dicretization grid. In order to resolve this problem we use size functions which can recognize the "qualitative similarity" between graphs of functions that should be theorically coinciding but, unfortunately, change their values due to the presence of noise. Moreover, we focus this study on a projective differential invariant which allows to decide if one shape can be considered as the deformation of another one by a rotation of the camera.Mots-clés
calculus on manifolds; nonlinear operators; real-valued functionsPublications associées
Affichage des éléments liés par titre et auteur.
-
Flamand, Guillaume (2017-12-01) Thèse
-
Lo Prete, Mariantonia; Kirat, Thierry (2011) Communication / Conférence
-
Dibos, Françoise; Koepfler, Georges; Lopez, Christian (2000) Document de travail / Working paper
-
Guiot, Denis (2019) Communication / Conférence
-
Pellicer, Miquel; Piraino, Patrizio; Wegner, Eva (2017) Rapport