
The optimal Euclidean Lp-Sobolev logarithmic inequality
Del Pino, Manuel; Dolbeault, Jean (2003), The optimal Euclidean Lp-Sobolev logarithmic inequality, Journal of Functional Analysis, 197, 1, p. 151-161. http://dx.doi.org/10.1016/S0022-1236(02)00070-8
View/ Open
Type
Article accepté pour publication ou publiéDate
2003Journal name
Journal of Functional AnalysisVolume
197Number
1Publisher
Elsevier
Pages
151-161
Publication identifier
Metadata
Show full item recordAbstract (EN)
We prove an optimal logarithmic Sobolev inequality in Wl,p(Rd). Explicit minimizers are given. This result is connected with best constants of a special class of Gagliardo–Nirenberg-type inequalities.Subjects / Keywords
Gagliardo–Nirenberg inequalities; Logarithmic Sobolev inequality; Optimal constants; Minimizers; Orlicz spacesRelated items
Showing items related by title and author.
-
Nonlinear diffusions, hypercontractivity and the optimal Lp-Euclidean logarithmic Sobolev inequality Del Pino, Manuel; Dolbeault, Jean; Gentil, Ivan (2004) Article accepté pour publication ou publié
-
Dolbeault, Jean; Del Pino, Manuel (2013) Article accepté pour publication ou publié
-
Del Pino, Manuel; Dolbeault, Jean (2002) Article accepté pour publication ou publié
-
Del Pino, Manuel; Dolbeault, Jean; Filippas, Stathis; Tertikas, Achilles (2010) Article accepté pour publication ou publié
-
Dolbeault, Jean; Zuniga, Andres (2022) Document de travail / Working paper