• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Efficient algorithms for the Max k-Vertex Cover problem

Paschos, Vangelis; Della Croce, Federico (2014), Efficient algorithms for the Max k-Vertex Cover problem, Journal of Combinatorial Optimization, 28, 3, p. 674-691. 10.1007/s10878-012-9575-7

View/Open
max_vertex_k-coveragecah_2.pdf (392.9Kb)
Type
Article accepté pour publication ou publié
Date
2014
Journal name
Journal of Combinatorial Optimization
Volume
28
Number
3
Publisher
Springer
Pages
674-691
Publication identifier
10.1007/s10878-012-9575-7
Metadata
Show full item record
Author(s)
Paschos, Vangelis
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Della Croce, Federico
Dipartimento di Automatica e Informatica [Torino] [DAUIN]
Abstract (EN)
Given a graph G(V,E) of order n and a constant k⩽n , the max k -vertex cover problem consists of determining k vertices that cover the maximum number of edges in G . In its (standard) parameterized version, max k -vertex cover can be stated as follows: “given G, k and parameter ℓ, does G contain k vertices that cover at least ℓ edges?”. We first devise moderately exponential exact algorithms for max k -vertex cover, with time-complexity exponential in n but with polynomial space-complexity by developing a branch and reduce method based upon the measure-and-conquer technique. We then prove that, there exists an exact algorithm for max k -vertex cover with complexity bounded above by the maximum among ck and γτ, for some γ<2, where τ is the cardinality of a minimum vertex cover of G (note that \textscmax k \textsc−vertexcover∉FPT with respect to parameter k unless FPT=W[1] ), using polynomial space. We finally study approximation of max k -vertex cover by moderately exponential algorithms. The general goal of the issue of moderately exponential approximation is to catch-up on polynomial inapproximability, by providing algorithms achieving, with worst-case running times importantly smaller than those needed for exact computation, approximation ratios unachievable in polynomial time.
Subjects / Keywords
max k-vertex cover problem; Exact exponential algorithms; Measure-and-conquer

Related items

Showing items related by title and author.

  • Thumbnail
    Efficient Algorithms for the max k -vertex cover Problem 
    Della Croce, Federico; Paschos, Vangelis (2012) Communication / Conférence
  • Thumbnail
    On the MAX MIN VERTEX COVER problem 
    Boria, Nicolas; Della Croce, Federico; Paschos, Vangelis (2014) Communication / Conférence
  • Thumbnail
    Approximation algorithms for the 2-peripatetic salesman problem with edge weights 1 and 2 
    Baburin, Aleksei; Della Croce, Federico; Gimadi, Edward; Glazkov, Yuri; Paschos, Vangelis (2009) Article accepté pour publication ou publié
  • Thumbnail
    An exact algorithm for MAX CUT in sparse graphs 
    Kaminski, Marcin; Della Croce, Federico; Paschos, Vangelis (2007) Article accepté pour publication ou publié
  • Thumbnail
    Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms 
    Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2011) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo