• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Lack of confidence in approximate Bayesian computation model choice

Robert, Christian P.; Cornuet, Jean-Marie; Marin, Jean-Michel; Pillai, Natesh S. (2011), Lack of confidence in approximate Bayesian computation model choice, Proceedings of the National Academy of Sciences of the United States of America, 108, 37, p. 15112-15117. http://dx.doi.org/10.1073/pnas.1102900108

Type
Article accepté pour publication ou publié
Date
2011
Journal name
Proceedings of the National Academy of Sciences of the United States of America
Volume
108
Number
37
Pages
15112-15117
Publication identifier
http://dx.doi.org/10.1073/pnas.1102900108
Metadata
Show full item record
Author(s)
Robert, Christian P.
Cornuet, Jean-Marie
Marin, Jean-Michel cc
Pillai, Natesh S.
Abstract (EN)
Approximate Bayesian computation (ABC) have become a essential tool for the analysis of complex stochastic models. Earlier, Grelaud et al. (2009) advocated the use of ABC for Bayesian model choice in the specific case of Gibbs random fields, relying on a inter-model sufficiency property to show that the approximation was legitimate. Having implemented ABC-based model choice in a wide range of phylogenetic models in the DIY-ABC software (Cornuet et al., 2008), we now present theoretical background as to why a generic use of ABC for model choice is ungrounded, since it depends on an unknown amount of information loss induced by the use of insufficient summary statistics. The approximation error of the posterior probabilities of the models under comparison may thus be unrelated with the computational effort spent in running an ABC algorithm. We then conclude that additional empirical verifications of the performances of the ABC procedure are necessary to conduct model choice.
Subjects / Keywords
DIYABC; Bayes factor; likelihood-free methods; Bayesian model choice; sufficiency
JEL
C11 - Bayesian Analysis: General

Related items

Showing items related by title and author.

  • Thumbnail
    Estimation of demo-genetic model probabilities with Approximate Bayesian Computation using linear discriminant analysis on summary statistics. 
    Cornuet, Jean-Marie; Robert, Christian P.; Pudlo, Pierre; Guillemaud, Thomas; Marin, Jean-Michel; Lombaert, Eric; Estoup, Arnaud (2012) Article accepté pour publication ou publié
  • Thumbnail
    Why approximate Bayesian computational (ABC) methods cannot handle model choice problems 
    Pillai, Natesh S.; Marin, Jean-Michel; Robert, Christian P. (2011-01) Document de travail / Working paper
  • Thumbnail
    Infering population history with DIY ABC : a user-friendly approach to Approximate Bayesian Computation 
    Estoup, Arnaud; Marin, Jean-Michel; Robert, Christian P.; Beaumont, Mark A.; Santos, Filipe; Guillemaud, Thomas; Balding, David; Cornuet, Jean-Marie (2008-04) Article accepté pour publication ou publié
  • Thumbnail
    Adaptive approximate Bayesian computation 
    Robert, Christian P.; Marin, Jean-Michel; Cornuet, Jean-Marie; Beaumont, Mark A. (2009) Article accepté pour publication ou publié
  • Thumbnail
    Relevant statistics for Bayesian model choice 
    Rousseau, Judith; Robert, Christian P.; Pillai, Natesh S.; Marin, Jean-Michel (2014) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo