• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

From Poincaré to logarithmic Sobolev inequalities: a gradient flow approach

Savaré, Giuseppe; Nazaret, Bruno; Dolbeault, Jean (2012), From Poincaré to logarithmic Sobolev inequalities: a gradient flow approach, SIAM Journal on Mathematical Analysis, 44, 5, p. 3186-3216. http://dx.doi.org/10.1137/110835190

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00595042/fr/
Date
2012
Journal name
SIAM Journal on Mathematical Analysis
Volume
44
Number
5
Publisher
SIAM
Pages
3186-3216
Publication identifier
http://dx.doi.org/10.1137/110835190
Metadata
Show full item record
Author(s)
Savaré, Giuseppe
Nazaret, Bruno
Dolbeault, Jean cc
Abstract (EN)
We use the distances introduced in a previous joint paper to exhibit the gradient flow structure of some drift-diffusion equations for a wide class of entropy functionals. Functional inequalities obtained by the comparison of the entropy with the entropy production functional reflect the contraction properties of the flow. Our approach provides a unified framework for the study of the Kolmogorov-Fokker-Planck (KFP) equation.
Subjects / Keywords
Kolmogorov-Fokker-Planck equation; Gradient flows; Action functional; Continuity equation; Generalized Poincaré inequality; Kantorovich-Rubinstein-Wasserstein distance; Optimal transport

Related items

Showing items related by title and author.

  • Thumbnail
    Stability in Gagliardo-Nirenberg-Sobolev inequalities : flows, regularity and the entropy method 
    Bonforte, Matteo; Dolbeault, Jean; Nazaret, Bruno; Simonov, Nikita (2022) Document de travail / Working paper
  • Thumbnail
    Interpolation between logarithmic Sobolev and Poincaré inequalities 
    Dolbeault, Jean; Bartier, Jean-Philippe; Arnold, Anton (2007) Article accepté pour publication ou publié
  • Thumbnail
    Stability results for logarithmic Sobolev and Gagliardo-Nirenberg inequalities 
    Dolbeault, Jean; Toscani, Giuseppe (2016) Article accepté pour publication ou publié
  • Thumbnail
    A mass transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities 
    Villani, Cédric; Cordero-Erausquin, Dario; Nazaret, Bruno (2004) Article accepté pour publication ou publié
  • Thumbnail
    Weighted interpolation inequalities: a perturbation approach 
    Dolbeault, Jean; Muratori, Matteo; Nazaret, Bruno (2017) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo