
Variational characterization for eigenvalues of Dirac operators
Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2000), Variational characterization for eigenvalues of Dirac operators, Calculus of Variations and Partial Differential Equations, 10, 4, p. 321-347. http://dx.doi.org/10.1007/s005260010321
View/ Open
Type
Article accepté pour publication ou publiéDate
2000Journal name
Calculus of Variations and Partial Differential EquationsVolume
10Number
4Publisher
Springer
Pages
321-347
Publication identifier
Metadata
Show full item recordAbstract (EN)
In this paper we give two different variational characterizations for the eigenvalues of H+V where H denotes the free Dirac operator and V is a scalar potential. The first one is a min-max involving a Rayleigh quotient. The second one consists in minimizing an appropriate nonlinear functional. Both methods can be applied to potentials which have singularities as strong as the Coulomb potential.Subjects / Keywords
Dirac operators; relativistic quantum mechanics; eigenvalues; min-max; minimization; Rayleigh-Ritz techniqueRelated items
Showing items related by title and author.
-
Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2006) Article accepté pour publication ou publié
-
Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2000) Article accepté pour publication ou publié
-
Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2023) Article accepté pour publication ou publié
-
Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2023) Article accepté pour publication ou publié
-
Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2000) Communication / Conférence